

Organics Recycling Feasibility Study

Final Report

Prepared By:

Nelson Engineering Kenai, AK

In Association With:

Coker Composting & Consulting Vinton, VA

August 2013

Executive Summary

Nelson Engineering, in association with Coker Composting & Consulting, has been retained by Kenai Peninsula Borough (KPB) to evaluate the feasibility of developing an organic wastes recycling facility somewhere in the Borough. The goals of the project were to characterize the organic (biodegradable) components of the municipal and industrial solid wastes generated in the Kenai Peninsula Borough, to evaluate the markets for the products that could be made from these materials (biogas for heating or electricity and/or compost for soil amendments or topsoils) and to evaluate the impact on the solid waste management facilities managed by the Borough.

Feedstocks to a possible organics recycling facility could include source-separated organics (SSO) like food scraps, fish wastes (both from processing and from fishing/cleaning), yard trimmings, garden organics, vegetative clearing debris and woody wastes. Evaluation of the solid wastes handled by KPB Solid Waste indicated that the following SSO could be potentially be diverted:

Year	Population Projections	Food Scrap Wastes	Woody Wastes	Fish Wastes	Sewage Sludge	Total
2012	56,980	10,879.25	1,171.00	44.91	1,777.00	13,872.16
2015	59,073	11,278.87	1,214.00	46.56	1,842.27	14,381.71
2020	62,174	11,870.95	1,277.74	49.00	1,938.98	15,136.67
2025	64,761	12,364.88	1,330.91	51.04	2,019.66	15,766.49
2030	66,700	12,735.10	1,370.75	52.57	2,080.13	16,238.56

Estimated Compostable Feedstocks

It is not clear that there are enough woody wastes in the current solid waste stream to support a composting facility, as preliminary process design suggests an annual demand of almost 7,000 tons/year for composting all of the biodegradable wastes listed above.

Collection alternatives for SSO were also evaluated. The majority of solid waste disposed in KPB is by citizen drop-off at one of the Borough's 21 solid waste management facilities (8 landfills, 5 staffed transfer facilities and 8 unmanned transfer sites) and there is some curbside and commercial waste collection by Alaska Waste in the KPB communities. Should KPB elect to develop a SSO diversion program for organics recycling, there are three basic collection options:

- SSO separated in specially-marked bags and co-collection with trash by Alaska Waste or by KPB Solid Waste
- SSO separated in uniquely-colored roll carts (similar to the 96-gal roll carts currently provided by Alaska Waste) and collected in a separate dedicated truck route by Alaska Waste or by KPB Solid Waste
- SSO separated and delivered to a specially-dedicated collection container at one of KPB's solid waste facilities

Given the likely high cost of setting up a separate collection route for SSO (along with additional traffic, safety and road wear issues), a dedicated drop-off system at KPB transfer stations will likely be the most workable system.

Recycling SSO is different from recycling other commodities insofar as organics recycling results in a product(s) that is typically sold directly to end users (inorganic recycled commodities are usually converted into new products by third party processors). Assessing the feasibility of organics recycling requires an understanding, on a preliminary basis, the nature and size of markets for products recovered from organic wastes. These products can be broadly grouped into compost-based horticultural products and energy products. Outlets for compost products include homeowner and business landscaping, sediment and erosion control, parks and recreation department landscaping, athletic field management, environmental site restoration, storm water management, etc. Outlets for recovered energy products include electrical production, natural gas pipelines and natural gas vehicles.

Compost is an organic matter resource that has the unique ability to improve the chemical, physical, and biological characteristics of soils or growing media. Compost can be utilized directly as a soil amendment, as a topdressing agent for turf, and as a mulch. It is considered a low-grade fertilizer, with a typical Nitrogen-Phosphorus-Potassium (N-P-K) value of 1.5-0.5-0.7. The primary sales market for compost in the Kenai Peninsula Borough is likely residential and commercial landscaping and gardening. This market for compost and compost-based soil products in KPB is largely untested but a survey of likely users concluded that KPB could sell about 2,000 – 3,000 cubic yards (CY) per year.

One of the approaches being considered for recycling SSO is anaerobic digestion (AD). AD, like composting, is a biological conversion process. The primary product from AD is called biogas. How the biogas is handled and processed depends on the end market. Biogas from an anaerobic digester can be used in several ways: as a substitute for natural gas, either in boilers producing hot water and steam for industrial processes, in combined heat and power (CHP) applications to generate electricity (as well as heat for space heating), as a pure natural gas substitute (high-graded for insertion into the natural gas supply), for fueling a fleet of vehicles or as a fuel for fuel cells. Of these, it is believed that electricity production, with the electricity used by KPB Solid Waste "behind the meter" of the Homer Electric Association has the greatest benefit to KPB.

Composting and digestion technologies were evaluated in this project. Preliminary process designs were developed to frame the evaluation. Due to the high costs of trucking organic wastes across the Borough, these initial preliminary process designs assume separate facilities in Seward, Homer and Soldotna, as follows:

• Composting in Seward – 600 tons/year of food scraps combined with 500 tons/year of woody wastes to produce 1,700 cubic yards of finished compost

- Composting in Homer 1,500 tons/year of food scraps combined with 1,000 tons/year of woody wastes to produce 3,500 cubic yards of finished compost
- Composting in Soldotna 8,850 tons/year of food scraps and seafood wastes, combined with 5,200 tons/year of woody wastes to produce 19,500 cubic yards of finished compost
- Anaerobic digestion/composting in Soldotna digesting 8,850 tons/year of mixed food and greenwastes to produce 34 million cubic feet of biogas per year, followed by composting to produce 11,700 cubic yards of finished compost

Composting technologies utilize an aerobic (with oxygen) process to decompose organic materials. It is a self-heating process that destroys pathogens and weeds seeds, and produces a material similar to soil humus. Composting technologies include turned windrow, aerated static pile, enclosed aerated static pile, and in-vessel. The turned windrow system is not recommended for KPB. It takes more space than other composting methods, it would have to be either housed in a building or only done seasonally, and precautions for bears, birds, and other wildlife would have to be taken. Aerated static pile (ASP) composting uses fan-forced aeration, which serves both to maintain aerobic conditions more thoroughly and completely within the static pile. ASP could work in KPB, though using an enclosed ASP composting process has several advantages over open-air methods: elimination of adverse weather effects, better process control, and improved opportunities to manage the air emission and wastewater sidestreams from the process. Containerized aerated static pile compost systems are enclosures that resemble ocean-going shipping containers in size and configuration. . They are usually aerated by low-horsepower centrifugal fans. These systems are provided by private technology companies. Containerized ASP Systems may be suitable for the scale of composting facility contemplated in KPB as the enclosures are insulated for use in cold weather, are scalable to KPB organics quantities and provide resistance to negative impacts such as wildlife, odors, and windblown debris.

Anaerobic digestion is a biological treatment process. The lack of oxygen results in waste stabilization by a different group of microorganisms who produce a usable energy source in the form of biogas (mostly methane). The products of anaerobic digestion are methane, carbon dioxide, trace gases and stabilized solids. Digestion technologies are either aerobic or anaerobic; the former is a method of stabilizing organic wastes, while the latter produces a usable gas byproduct during the stabilization process. Both types of digestion are traditionally "wet" processes and produce both a solid residual and a wastewater effluent that must be further managed. Recent technology changes in Europe have introduced a dry form of anaerobic digestion requires more steps in its process flow and is therefore more expensive, so only anaerobic digestion was evaluated. Anaerobic digestion is a feasible option for KPB. The drawback is extra space needed for the digest to be composted further in windrows or ASPs, but anaerobic digestion is the only process that produces a viable energy byproduct.

The project team evaluated availability of sites to potentially locate an organics recycling facility in the Borough. The KPB owns over 1,500 parcels of land. The site evaluation was limited to those borough-owned lands. The land was evaluated for adequacy regarding size, proximity to sensitive receptors, environmental features, and site topography, with the goal of identifying any issues that might cause permitting or implementation constraints to a proposed site and recommending alternatives to remove those constraints.

Siting a composting (or digestion) facility properly is one of the key factors in ensuring the development of a successful facility. Arguably, poor site selection is the principal cause of many failed composting facilities. Siting must consider factors that include environmental features, such as proximity to sensitive natural and human resources, as well as infrastructure-related issues including availability of utilities, road access, and zoning constraints. The KPB GIS department assisted in analyzing the Borough owned lands by applying search/selection criteria to all such parcels included in the borough's GIS database. Parcels meeting the following criteria were selected for further analysis:

- Minimum parcel size:
 - Soldotna 5 acres
 - Homer 1.4 acres
 - Seward 0.8 acres
- Not in the 100-year floodplain
- Not in "Lowland Wetlands"
- At least 1,000 ft distant of any churches, parks, hospitals, shopping centers, etc.
- At least 1,000 ft distant from any homes
- At Least 50 ft from any property line, well, or stream
- Not located in any "Local Option Zoning" areas
- Not in any KPB Habitat Protection Areas
- Within 20 miles of Soldotna
- Within 10 miles of Seward
- Within 12 miles of Homer

After looking at the Borough's GIS information and applying the criteria, two possible site locations were found in Seward, five in Homer, and six in the Soldotna/Kenai area. Composting facility sites were not considered for remote areas such as Tyonek, English Bay, and Seldovia or for areas such as Hope, Moose Pass, Cooper Landing or other unincorporated communities that are on the road system. Those areas either do not have adequate population to generate enough SSO to justify a small facility, or they are too far away from other sites to make it practical to haul SSO to them from other areas. The evaluation concluded that the following sites were the most suitable:

- Kenai/Soldotna
 - o Central Peninsula Landfill

- o Kenai Transfer Station
- o Kenai "Firewise" site
- Homer
 - o Homer Landfill/Transfer Station
- Seward
 - o Seward Transfer Station

Discussions with the Alaska Department of Environmental Conservation (ADEC) and local City officials gave clarification on required permit and zoning needs. There is currently no solid waste digestion or source-separated organic solid waste processing regulation in Alaska. Solid waste permit requirements are required per 18 AAC 60.200. Under the list of exemptions 18 AAC 60.200 (a) (9) provides exemptions for 'a reuse, recycling, or resource recovery facility unless the department determines that the facility is causing or is likely to cause excessive odor or other problems such as combustion, blowing litter, water quality degradation, or vermin attraction'.

If site development disturbs more than one acre, construction of the project falls under the EPA's Storm Water Construction General Permit. Preparation of a Storm Water Pollution Prevention Plan (SWPPP) is required as well as filing a Notice of Intent (NOI). Plan review is not required if storm water is not collected or treated. If storm water is collected, a storm water discharge permit is required and plans must be submitted for review per 18 ACC 72.600.

The Kenai Borough 'Firewise site', located on KPB parcel # 04301036 is zoned for Recreation by the City of Kenai and the City will require a Conditional Use Permit (CUP) for an organics recycling facility to be located on the site. The Homer Transfer Station, located on KPB parcels #17367004, #17316056, and #17316057, has been identified as a potential site. As this sites' current function is similar to organics recycling there are no required permits from the City of Homer. The Seward Transfer Site, located on KPB parcel #14424004, has been identified as a potential site. The property does fall in the City Limits, but there are no zoning permits required as the current land use is comparable to organics recycling. If a building is built for the composting facility a building permit is required and may include further permits pertaining to utilities and a floodplain review.

The project team developed preliminary, planning level estimates of capital and operating costs based on costs of similar facilities elsewhere. The capital costs for organics recycling facilities are similar to those for any solid waste management facility: land acquisition, site development, buildings, roadways, fencing and security, and materials handling equipment. As organics recycling involves biological processes to convert wastes to energy and/or soil amendments, there is also a technology cost. Composting and anaerobic digestion, the two processes evaluated in this study, can be done with generic approaches, or with technologies purchased from vendors.

Operating costs for organics recycling facilities will include labor, fuel, electricity, equipment maintenance, disposal of unprocessable materials, product marketing, product sales, and, possibly, acquiring feedstocks. There are possibly not enough woody wastes in the KPB solid waste stream to support a facility and it may be necessary to source wood chips, sawdust, and similar carbonaceous materials. The Anchorage Wood Lot, run by the Anchorage Soil & Water Conservation District is one possible source. Wood chips would be free, but transport costs will likely be high.

In addition to the costs for the facility itself, there will also be costs involved in collecting and transporting organic wastes to the facility. If the dedicated drop-off system is used, KPB citizens and businesses would bring their SSO to a transfer site or station and KPB would have its hauler bring the roll-off to the composting facility. If KPB built a centralized compost facility at, or near, the CPL landfill, the estimated costs for this alternative, the annual costs for hauling would vary from \$2,000 to over \$47,000 depending on the distances involved (Seward and Homer Transfer Station haul costs are the highest in KPB).

Capital costs for a composting facility to recycle SSO vary widely, depending, in large part, on the need for, and extent of, higher levels of technological process and environmental controls. The project team developed preliminary capital and operating cost estimates for the three aerated compost bin configurations (one for the Seward area, one for the Homer area, and one for the Kenai/Sodotna area). This approach would have all processing steps enclosed in a building, with a generic induced-draft aerated static pile composting approach with air treatment by biofiltration. Similarly, these three alternatives were costed out using vendor-provided technology (Engineered Compost System's "CV" or "SV" composting systems). None of the alternatives include a cost for purchased wood chips as no source could be found in KPB.

Facility	Capacity (tons/year)		Capital Cost Estimate (\$)	Equipment Cost Estimate	Operating Cost Estimate (\$/ton)
	SSO	Greenwaste			
Seward Area	600	500	\$1,853,000	\$223,400	\$31.06
Homer Area	1,400	1,000	\$3,025,000	\$303,000	\$24.14
Kenai/Soldotna Areas	8,500	5,000	\$12,125,000	\$426,000	\$16.02

Preliminary	Capital	and Op	perating	Costs for	Generic	ASP Sy	stems

Facility	Capacity (tons/year)		Capital Cost Estimate (\$)	Equipment Cost Estimate	Operating Cost Estimate (\$/ton)
	SSO	Greenwaste			
Seward Area	600	500	\$2,265,000	\$223,400	\$48.29
Homer Area	1,400	1,000	\$4,380,000	\$303,000	\$38.65
Kenai/Soldotna Areas	8,500	5,000	\$6,283,500	\$426,000	\$18.45

Preliminary Capital and Operating Costs for ECS CV/SV Systems

Like composting, anaerobic digestion (AD) facilities can be generic or purchased from a vendor. The generic AD designs are traditionally liquid digesters, like those found on farms for livestock manure digestion. Solid waste digesters (also known as dry fermenters) are a late-20th century European technology and are only available from project developers, who offer the technology in a design-build or design-build-operate business model.

One dry fermentation AD project developer, Zero Waste Energy (Lafayette, CA) offers the Eggersmann KompoFerm and SmartFerm combination AD and composting systems. The SmartFerm system is sized in 5,000 ton/year increments. A 5,000 ton/year system has a capital cost estimate of \$2,125,000 and estimated operating costs of \$15.00 per ton.

The results of initial phases of this study were used to develop a set of nine (9) preliminary conceptual organics recycling alternatives. The alternatives are combinations of feedstocks, sites, technologies, and markets. These alternatives were evaluated using a weighted matrix criteria technique. The weighted criteria matrix is a decision-making tool that was used to evaluate alternatives based on specific evaluation criteria weighted by importance. By evaluating alternatives based on their performance with respect to individual criteria, a value for the alternative was identified. The values for each alternative were then compared to create a rank order of their performance related to the criteria as a whole. This tool is important because it treats the criteria independently, helping avoid the over-influence or emphasis on specific individual criteria. The evaluation criteria were developed by staff and the importance weighing factors assigned by Kenai Peninsula Borough personnel.

Alternatives were defined by the constraints of geography, weather, wildlife and existing solid waste infrastructure. Other constraints included:

- The availability of adequate amounts of carbon (woody material) to support the composting of food and/or seafood wastes. Golden Heart Utilities composting facility in Fairbanks faces this same challenge, but they are able to purchase spruce and birch wood chips from Northland Wood for \$24.50/CY.
- The long hauling time from Seward and Homer to the Kenai/Soldotna area.

- The solid waste collection infrastructure is oriented toward drop-off programs at transfer stations or convenience centers more than curbside pickup of commercial and/or residential solid waste.
- The market for compost is currently limited and will need time and effort to stimulate.
- The market for recovered energy is potentially more robust given Homer Electric's net metering program.

The alternatives developed for analysis included:

<u>Alt.</u>	<u>Where</u>	<u>Size</u>	Feedstock	Collection	Processing	<u>Technology</u>	<u>Market</u>
1	CPL	10,000 Ton/Yr	All	Private	AD+IVC ¹	SmartFerm + ECS	Electricity +compost
2	CPL	10,000 Ton/Yr	All	Private	IVC only	ECS SV	Compost
3	CPL	10,000 Ton/Yr	All	КРВ	AD+IVC	SmartFerm + ECS	Electricity +compost
4	CPL	10,000 Ton/Yr	All	КРВ	IVC only	ECS SV	Compost
5	Homer TS	1,500 Ton/Yr	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
6	Seward TS	600 Ton/Yr	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
7	CPL	8,000 Ton/Yr	All	Drop-off	IVC only	ECS CV, aerated bin	Compost
8	Homer TS	Demo - 170 T/Y	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
9	Kenai TS	Demo - 250 T/Y	Seasonal fish waste	Drop-off	IVC only	Aerated Static Pile	Compost

Alternatives Evaluated

¹AD = Anaerobic Digestion; IVC = In-Vessel Composting

Each of the evaluation criteria were assigned a "weighting factor" by KPB staff, a numerical value between 1 and 5, where 1 meant it was not an important criterion, 3 meant it was neither an important nor an unimportant criterion and 5 meant it was an important criterion as shown below:

Weighted Matrix Evaluation Criteria

Criteria Class	Evaluation Criteria	Weight Factor
Foodstooks	Flexibility to handle difference feedstocks	4
Feedstocks	Carbon/woody amendment demand	5
	Participation rate	5
Collection and Transport	Contamination prevention	4
nonsport	Hauling distance	4
	Similar facilities in AK	3
lange and a station of the sig	Time to Implement	3
Implementation Criteria	Local permits & approvals	4
	State permits & approvals	4
	Capital costs	5
Costs	Operating costs	5
	Maintainability	4
Mariliata	Recovered energy	3
warkets	Compost	5
Aesthetic/	Potential for odor episodes	5
Environmental	Proximity to sensitive receptors	5

For each of the evaluation criteria, a raw (i.e. un-weighted) score was assigned. Scoring was from 1 to 5, where 1 meant the alternative was least favorable with respect to the evaluation criterion and 5 meant it was most favorable. Scores were based on best professional judgment.

These weighting factors were multiplied by the raw scores to produce weighted scores. The weighted scores for each alternative were then summed across all evaluation criteria to produce a total weighted score for each alternative. The highest scoring alternatives were:

Alternative	Total Weighted Score
Alt. 8 – Homer Area Demo (170 TPY)	288
Alt. 9 – Kenai/FireWise Demo (250 TPY)	269
Alt. 6 – Seward Transfer Sta. (600 TPY)	268
Alt. 5 – Homer Transfer Station (1,500 TPY)	267

Alternative 8 had the highest score, and the next three highest scoring alternatives were similarly scored. A small-scale demonstration project in the Homer area could accomplish several objectives:

- Provide a mechanism for food scraps diversion from an area of KPB that has high interest in diversion
- Verify that sources of woody carbon material can be sourced for use in composting
- Confirm that enclosed aerated static pile composting technology (such as the ECS CV Composter or the GMT Earth Flow) will work satisfactorily in KPB winter conditions
- Verify that a market exists for the compost in the Homer area

Alternative 9 would also accomplish several objectives, at potentially minor additional cost:

- Solve a seasonal fish waste problem that has potential environmental and tourism impacts
- Confirm that low-technology windrow composting may be suitable for warm season usage
- Verify that a market exists for the compost in the Kenai and Soldotna areas

Based on these evaluations, and due to uncertainties regarding adequate amounts of carbonaceous bulking agent amendment, the participation rate for a drop-off SSO diversion program, and the market demand for a compost product in the KPB, the recommendation is that KPB develop two pilot programs, one for handling food scraps generated in the Homer area, and one for handling seasonal salmon run fish wastes in the Kenai area.

The Homer area demonstration project could be based on a containerized aerated static pile technology, similar to the "CV Composter" sold by ECS. The CV Composter resembles an oceangoing shipping container and operates as a batch system, where a 32-CY container is filled with SSO and carbon amendment and allowed to compost in the reactor for 25 days. After active composting, the material in the reactor would be cured/aged for another 60-90 days, then screened to remove oversized particles from the finished compost.

The goals for the Homer pilot project would be:

- 1. Determine effectiveness/willingness of local population to separate organics and deliver them to the Compost Facility.
- 2. Determine effectiveness/willingness of local population to separate organics and deliver them one of several collection facilities, then cost to haul to Compost facility.
- 3. Determine actual availability of wood fiber delivered to the compost facility and then cost to grind up at the facility.
- 4. Determine effectiveness and cost to operate the CV Composter units(s).
- 5. Determine cost recovery, if any, resulting from selling finished compost.

6. Determine other associated costs for marketing, such as possible need to bag the compost vs. loading it into individuals' vehicles for self-delivery.

The proposed demonstration would be based on KPB acquiring two (2) CV Composter units, setting them up at the Homer Transfer Station/Balefill site, and installing dedicated SSO collection units at the Homer Transfer Station, the Anchor Point Transfer Site, the McNeil Canyon Transfer Site, and possibly the Ninilchik Transfer Site. The collection units would be pulled by KPB weekly, delivered to the Homer demonstration site and unloaded. Proportional amounts of SSO and ground-up carbonaceous bulking agent (mostly yard trimmings and wood chips) would be mixed by a combination mixer/reactor loading conveyor.

Estimated capital costs for this Alternative 8 – Homer demonstration project total about \$970,000 for site improvements and composting technology and \$240,000 for other processing equipment. Operating costs for the demonstration project are estimated at about \$52,000 per year, consisting of \$15,000 in labor costs, \$23,000 in machine costs (fuel, maintenance, etc.), and about \$14,000 per year in waste transport costs between the Homer site and the more-distant SSO collection and transfer sites. Detailed cost estimates are included in the Appendix.

The Alternative 9 - Kenai demonstration program would support the City Kenai, which has been tasked with disposal of seasonal dipnetters' fish waste in order to minimize beach contamination. The City estimates that approximately 500,000 lb. (250 tons) of fish waste is generated in July, during the month-long dipnet season. Current practice is to use a front end loader to scrape fish offal off the beach and push it out below the low tideline. The City has expressed willingness to load the fish waste into containers to facilitate offsite composting by others.

The Kenai Borough 'FireWise site', consisting of 31.1 acres located on KPB parcel # 04301036, has been identified as a potential site for an Organics Recycling Facility. The parcel is zoned for Recreation by the City of Kenai and the City will require a Conditional Use Permit (CUP) for an organics recycling facility to be located on the site. If a CUP can be issued for this site, it may be a suitable site for handling both the seasonal fish waste, along with organics collected after the summer fishing season ends.

The composting facility would occupy about 9 acres of the available 31 acres, which would include a waste receipt area, area for the storage of enough ground woody material to handle the entire 250 tons of fish wastes, an active composting area, a curing area, and a product screening and storage area, with the storage area sized to hold one year's worth of compost (about 2,600 CY) and the screened-out overs (about 600 CY).

Estimated capital costs for this demonstration project total about \$850,000 for site improvements and \$240,000 for other processing equipment. Operating expenses for the

Kenai demonstration project are difficult to project due to the seasonal nature of the feedstock, but most window composting systems operate in the \$15-\$20 per ton (incoming) range, which would suggest an annual operating cost of \$22,500 to \$30,000. In addition, there would likely be \$10,000 - \$15,000 in annual costs to KPB in support of the compost market development program to serve both demonstration sites.

An alternative demonstration project could be set up in partnership with a local non-profit organization, Matti's Ranch, where Blair Martin serves as the Executive Director. Mr. Martin has been working with City of Kenai officials to handle the fish wastes at his 20-acre farm in Kenai. KPB Solid Waste could investigate the possibility of a public-private partnership for this particular demonstration project before committing to improving the FireWise site.

Table of Contents

Executive SummaryES-1
Table of Contents1
Introduction5
Chapter 1 - Feedstocks Characterization6
Introduction6
Methodology6
Available Types of Feedstocks7
Food Scraps7
Woody Wastes
Fish Processing Wastes8
Municipal Sewage Sludge8
Summary9
Chapter 2 - Collection Alternatives
Introduction11
Existing Collection Infrastructure11
SSO Collection Options11
Chapter 3 - Recovered Product Markets14
Introduction14
Compost Markets14
Market Overview14
Survey Analysis15
Compost Markets in Alaska17
Energy Products Markets
Electricity Production19
Natural Gas Augmentation21
Vehicle Fleet Fuel21
Summary22
Chapter 4 - Technology Analysis25
Introduction25
Process Design25

Technology Alternatives27
Composting27
Anaerobic Digestion (AD)35
Summary
Chapter 5 - Siting Evaluation40
Introduction40
Composting Facility Siting Criteria40
Search/Selection Criteria40
Methodology41
Description of Sites41
Kenai/Soldotna41
Homer
Seward42
Summary43
Chapter 6 - Permits and Approvals44
Introduction44
ADEC
City of Kenai45
City of Homer45
City of Seward45
Chapter 7 - Cost Estimates47
Introduction47
Cost Estimates47
Collection Costs
Composting Facility Costs
KPB Costs52
Anaerobic Digestion Facility Costs52
Chapter 8 - Alternatives Evaluation
Introduction54
Methodology54
Alternatives

Evaluation Criteria	57
Alternative Scoring	60
Summary	65
Chapter 9 – Recommendations	66
Introduction	66
Homer Demonstration Project	66
Kenai Demonstration Project	69
Appendices	73
Process Design Calculations	74
Overview Siting Maps	88
Capital and Operating Cost Estimates	92
Recommendations	105

List of Tables

Table 1.0: Kenai Peninsula Borough Landfill/Transfer Site Monthly Tonnages
Table 1.1: Kenai Peninsula Population Projections 7
Table 1.2: Kenai Peninsula Borough Food Scraps 8
Table 1.3: Current Feedstock Amounts in Tons
Table 1.4: Future Feedstock Production Estimates for KPB 9
Table 3.0: Biogas Composition 18
Table 3.1: Electricity and Heat Demands 19
Table 4.1: Technology Evaluation Matrix 39
Table 4.2: Total Estimated Available Feedstock Tonnage per Year in KPB
Table 7.1. Costs for SSO Drop-off
Table 7.2. Annual Cost for Residential SSO Collection 50
Table 7.3: Preliminary Capital and Operating Costs for Generic ASP Systems
Table 7.4: Preliminary Capital and Operating Costs for ECS CV/SV Systems
Table 8.1: Alternatives
Table 8.2: Weighted Matrix Evaluation Criteria 59
Table 8.3: Raw Alternatives Evaluation Score 61

ble 8. 4: Weighted Alternatives Evaluation Score63
--

List of Figures

Figure 2.0. Blue Bag Organics	12
Figure 2.1. Dedicated Roll Carts	13
Figure 3.0: Average importance level of compost characteristics	15
Figure 3.1: Average concern level of compost contaminants	16
Figure 3.2: The price that respondents are willing to pay per CY of compost	16
Figure 4.0: Aerated Composting Bin	27
Figure 4.1: Aerated Static Pile Layout	31
Figure 4.2: ECS CV Composter	33
Figure 4.3: ECS SV Composter	33
Figure 4.4: SMARTFERM Dry Fermentation Unit	36
Figure 4.5: SMARTFERM Site Layout	37
Figure 4.6: Field-assembly of Bad Oeynhausen, Germany Digester	38

Introduction

Nelson Engineering, in association with Coker Composting & Consulting, has been retained by Kenai Peninsula Borough (KPB) to evaluate the feasibility of developing an organic wastes recycling facility somewhere in the Borough. The goals of the project were to characterize the organic (biodegradable) components of the municipal and industrial solid wastes generated in the Kenai Peninsula Borough, to evaluate the markets for the products that could be made from these materials (biogas for heating or electricity and/or compost for soil amendments or topsoils) and to evaluate the impact on the solid waste management facilities managed by the Borough to see if cost savings can be realized by diversification of the recycling infrastructure.

The project team reached these goals through a series of tasks, the work from each of which was documented in a series of task reports. This report is a compilation from the various task reports, which are available for review at the offices of the KPB Solid Waste Department. The tasks that were completed in this study were:

- Task 1 Feedstock Sourcing and Characterization
- Task 2 Recovered Products Preliminary Market Characterization
- Task 3 Technology Evaluation
- Task 4 Siting Evaluation
- Task 5 Cost Estimates
- Task 6 Permitting Analysis
- Task 7 Evaluation of Alternatives
- Task 8 Final Report

During the project, the scope for Task 5 was modified to include an analysis of collection alternatives. This report includes summaries of each of the task reports prepared during this project.

Chapter 1 – Feedstocks Characterization

Introduction

Understanding volumes of incoming waste materials (known as "feedstocks") along with tonnages is important, as organics recycling is a volume-based manufacturing operation. The types of recyclable organic wastes generated in the Kenai Peninsula Borough project consist of woody waste, yard trimmings, vegetative clearing debris, fish processing waste, municipal sewage sludge, and food scraps. Collectively, these materials are considered "source-separated organics" (SSO).

Methodology

Quantities for woody waste, yard trimmings, vegetative clearing debris, fish processing waste, municipal sewage sludge and municipal solid waste (MSW) were provided by the Kenai Peninsula Borough (KPB) and are shown in Table 1.0. Supplemental waste characterization reports were supplied by Coker Composting & Consulting.

Month	Year	Seward Transfer Site*	Homer Landfill	Central Peninsula Landfill	Total
July	2011	372.00	1,065.00	5,623.83	6,688.83
August	2011	372.00	1,030.50	5,850.84	6,881.34
September	2011	360.00	942.00	11,720.57	12,662.57
October	2011	372.00	937.50	8,720.73	9,658.23
November	2011	348.00	757.50	6,542.09	7,299.59
December	2011	360.00	738.00	7,202.58	7,940.58
January	2012	372.00	754.50	3,026.73	3,781.23
February	2012	348.00	651.00	2,407.25	3,058.25
March	2012	372.00	711.00	2,487.96	3,198.96
April	2012	360.00	825.00	3,544.99	4,369.99
May	2012	372.00	1,155.00	4,730.86	5,885.86
June	2012	360.00	1,126.50	5,157.04	6,283.54
Total:	_	4,368.0	10,693.5	67,015.47	77,708.97

Table 1.0: Kenai Peninsula Borough Landfill/Transfer Site Monthly Tonnages

*Seward Transfer Site amounts are based on an estimate of 12 tons per day and are not included in the total column, as they are already included in CPL's numbers.

The planning period for this study was selected to be 2015 to 2030. Forecasting future quantities was done on the basis of population projections provided by the Alaska Department

of Labor and Workforce Development and are presented in Table 1.1. The data¹ for this time period was developed based on current population and historical trends in birth, death and migration levels. The population data was used to define "per capita" generation rates for organic wastes for both present and future conditions.

Year	Population	Population	Growth Rate
		Change	(Percent)
2010	55,712	—	—
2015	59 <i>,</i> 073	3,361	5.69
2020	62,174	3,101	4.99
2025	64,761	2,587	3.99
2030	66,700	1,939	2.91

Table 1.1: Kenai Peninsula Population Projections

Available Types of Feedstocks

Food Scraps

As KPB does not separately track food scraps, food scrap tonnages were estimated based on an review of food waste percentages found in various Alaskan and national waste characterization studies:

- Kalskag, AK (2010) 14% of the waste stream was food scraps, 6.3% was cardboard, 1.2% was newspaper, 14.9% was office/mixed paper, and 4.3% was other paper.
- Unalaska/Dutch Harbor, AK (2000) the organics category contained fish waste, wastewater treatment plant (WWTP) solids, and a portion of "as received" organics, with an estimated percentage of organics at 32%. Because this community is remote and has a year-round fishing industry, this data was considered less representative of KPB conditions.
- Kodiak Island Borough (KIB, 2008) 14% of the waste was food scraps.
- U.S. Environmental Protection Agency (2010) 14.1% of all MSW in the U.S. was food scraps, and and 13.7% of MSW was yard trimmings

Upon reviewing these reports in addition to two others done in the states of Maine and Georgia, for supplementary comparison, and removing the outlier found in the Unalaska report, the estimated percentage of food scraps in the KPB waste stream is 14%. Based on the assumed percentages of food scraps in the KPB waste stream, about 10,879 tons of food scraps was generated for the fiscal year of 2012 (see Table 1.2).

¹ "Borough/Census Area." <u>Research and Analysis</u>. 2010. 7 Sep, 2012. State of Alaska Department of Labor and Workforce Development. http://labor.alaska.gov/research/pop/popproj.htm

Landfill/Transfer Site	Food Waste Tonnage	% of Total Food Waste
Seward Transfer Site*	611.52	_
Homer Landfill	1,497.09	13.8
Central Peninsula Landfill	9,382.16	86.2
Total:	10,879 Tons	100.0

Table 1.2: Kenai Peninsula Borough Food Scraps

*Seward Transfer Site amounts are already included in CPL's numbers and are omitted from the total row.

Woody Wastes

Woody wastes include yard trimmings and vegetative clearing debris. KPB Solid Waste's Central Peninsula Landfill (CPL) combines these vegetative classes into a single category for their records. Woody wastes are tracked as a volume at the Seward transfer station and the Homer landfill, due to a lack of weigh scales. The estimated weight per cubic yard is about 500 lbs. The Seward transfer site captures about 300 CY or 75 tons of woody wastes per year, the Homer Landfill about 1,000 CY or 250 tons, and CPL about 846 tons annually.

Fish Processing Wastes

While most fish processors grind and discharge their fish waste back into the rivers or Cook Inlet, the general public and some smaller fish processing companies dispose of their fish waste at CPL. Last year, 44.91 tons of fish wastes were discarded at CPL.

Significant quantities of fish waste are also generated as a by-product of the sockeye salmon dipnet fishery which is centered at the mouth of the Kenai River. The City of Kenai has been tasked with disposal of fish waste in ordered o minimize beach contamination. The City estimates that approximately 500,000 lb. (250 tons) of fish waste is generated in July, during the month-long dipnet season. Current practice is to use a front end loader to scrape fish offal off the beach and push it out below the low tideline. The City has expressed willingness to load the fish waste into containers to facilitate offsite composting by others.

Municipal Sewage Sludge

The main suppliers of sewage sludge to CPL are the cities of Kenai and Soldotna. Last year 1,327 tons of sewage sludge was disposed of at CPL. The Homer Landfill receives about 450 tons of sewage sludge annually from the City.

Table 1.3 shows the current feedstock tonnage totals from the main waste collection locations.

Feedstock	Seward Transfer Site*	Homer Landfill	Central Peninsula Landfill	Total
Food Scrap Waste	611.52	1,497.09	9,382.16	10,879.25
Woody Waste	75.00	250.00	846.00	1,171.00
Fish Processing Waste	—	_	44.91	44.91
Municipal Sewage Sludge	—	450.00	1,327.00	1,777.00
Total:	686.52	2,197.09	11,600.07	13,872.16

Table 1.3: Current Feedstock Amounts in Tons

*Seward Transfer Site amounts are already included in CPL's numbers and are omitted from the total column with the exception of woody wastes.

Summary

Table 1.4 contains the results of the projection of future feedstocks production. The projected quantities of organics are about 14,400 tons/year in 2015, increasing to 16,200 tons/year in 2030. However, not all of these organics are considered "capturable" as there is no requirement to divert organics. In those U.S. communities with curbside residential collection of source-separated organics (SSO) participation rates average 35% - 45% and setout quantities average 12-15 lbs/household/week.

About 1.36 pounds of waste is created per person per year in the Borough, and of that waste about 0.25 pounds is potentially compostable, but these waste generation estimates are considered low because not every person who lives in the borough takes waste to the Homer and Central Peninsula Landfills. This is the case for the communities of Beluga, Nanwalek, Port Graham, Seldovia, and Tyonek as they have their own landfills.

Year	Population Projections	Food Scrap Wastes	Woody Wastes	Fish Wastes*	Sewage Sludge	Total
2012	56,980	10,879.25	1,171.00	44.91	1,777.00	13,872.16
2015	59,073	11,278.87	1,214.00	46.56	1,842.27	14,381.71
2020	62,174	11,870.95	1,277.74	49.00	1,938.98	15,136.67
2025	64,761	12,364.88	1,330.91	51.04	2,019.66	15,766.49
2030	66,700	12,735.10	1,370.75	52.57	2,080.13	16,238.56

Table 1.4: Future Feedstock Production Estimates for KPB

*Fish waste is more dependent on fish runs rather than population

As this information is derived from other studies, it is recommended that the Kenai Peninsula Borough perform its own waste characterization study, similar to the ones performed in Kodiak

and Unalaska, to gain more accurate information for the design of any organics recycling facility that might arise from this study.

Chapter 2 –

Collection Alternatives

Introduction

Implementation of any source-separated organics diversion program requires development of some system to collect and transport the separated organics to a processing facility. This chapter examines existing KPB collection infrastructure and explores options for transferring SSO to a new recycling facility.

Existing Collection Infrastructure

The majority of MSW disposed in KPB is by citizen drop-off at one of the Borough's 21 solid waste management facilities (8 landfills, 5 staffed transfer facilities and 8 unmanned transfer sites). Alaska Waste – Kenai Peninsula, LLC (d/b/a Alaska Waste) provides collection services to approximately 1,425 residential accounts and 1,940 commercial accounts in Homer, Kenai, Soldotna, and Seward.

SSO Collection Options

Should KPB elect to develop a SSO diversion program for organics recycling, there are three basic collection options:

- SSO separated in specially-marked bags and co-collection with trash by Alaska Waste or by KPB Solid Waste
- SSO separated in uniquely-colored roll carts (similar to the 96-gal roll carts currently provided by Alaska Waste) and collected in a separate dedicated truck route by Alaska Waste or by KPB Solid Waste
- SSO separated and delivered to a specially-dedicated collection container at one of KPB's solid waste facilities

Co-collection of SSO and trash is a new approach, pioneered in 2012 in Minnesota to cut down on wintertime road damages by solid waste collection trucks. Known as the "Blue Bag Organics" program (www.bluebagorganics.com), it is a subscription program where a residential or commercial customer gets appropriately-sized containers (i.e. 18-gal. or 30-gal. for typical residential accounts) and sixty (60) specially-made compostable plastic bags. The bags have additional plasticizers incorporated into the resin to reduce bag breakage. The bags are filled with SSO and then put out for collection with the trash. When the load arrives at the solid waste management facility, the colored bags of SSO are pulled out of the trash stream and redirected to the organics recycling facility. This separation process is most safely handled at a Materials Recovery Facility or similarly-equipped structure. As KPB has no facility suitable for the safe segregation of SSO from commingled MSW, this alternative may be difficult to implement. Figure 2.0 is an illustration from the Blue Bag Organics program.

Figure 2.0. Blue Bag Organics

Collection of SSO in specially-colored carts is the most common method practiced in the 192 U.S. communities with residential curbside SSO collection programs. Alaska Waste currently offers dark green roll carts, so SSO roll carts would preferably be some distinctive contrasting color to make it visually easier to identify the correct roll cart (Figure 2.1). The SSO roll carts would be placed at curbside in alternate days from regular trash pickup, but this requires a separate dedicated truck route, with its attendant impacts on traffic congestion, road wear and vehicle and pedestrian safety. Similar programs can be put in place for businesses with significant SSO generation (restaurants, grocery stores, etc.), but it requires duplication of the solid waste collection infrastructure.

Drop-off programs for SSO diversion have traditionally yielded the lowest diversion tonnages as the communities with SSO programs in the U.S. tend to be more densely populated than KPB communities and residents and businesses are used to curbside collection. Given that drop-off

Figure 2.1. Dedicated Roll Carts

of MSW is the basic method of solid waste collection in KPB, a combination of a Blue Bag Organics-type program, with dedicated drop-off collection dumpsters at KPB solid waste facilities, might be more easily implemented. These dumpsters would have to be similar to the bear-proof facilities currently in use at KPB facilities, but they could have different colors or have informational signage and graphics to promote the SSO diversion program. These dedicated dumpsters would be replaced with empty ones weekly and the filled containers hauled to the organics recycling facility.

Chapter 3 – Recovered Product Markets

Introduction

Assessing the feasibility of organics recycling requires an understanding, on a preliminary basis, the nature and size of markets for products recovered from organic wastes. These products can be broadly grouped into compost-based horticultural products and energy products.

Outlets for compost products include homeowner and business landscaping, sediment and erosion control, parks and recreation department landscaping, environmental site restoration, storm water management, etc. Outlets for recovered energy products include electrical production, natural gas pipelines and natural gas vehicles.

Compost Markets

The primary sales market for compost in the Kenai Peninsula Borough is likely residential and commercial landscaping and gardening, but there are no accepted quantitative "standards" for what the marketplace will buy (it uses qualitative "standards" like color, no objectionable odors, minimal levels of contamination with inert materials, etc.).

Market Overview

Compost is an organic matter resource that has the unique ability to improve the chemical, physical, and biological characteristics of soils or growing media. It is made by the aerobic biological decomposition of organic materials like greenwaste, food scraps, etc. Compost can be utilized directly as a soil amendment, as a topdressing agent for turf, and as a mulch. It is considered a low-grade fertilizer, with a typical Nitrogen-Phosphorus-Potassium (N-P-K) value of 1.5-0.5-0.7. Compost benefits soils from three perspectives: biologically, in that is adds beneficial microorganisms to soils; chemically, in that it creates a pool of organic nitrogen (and other nutrients) in the soil that plants can use for nourishment over several years; and physically, in that it improves soil structure, reduces irrigation demand, and improves water holding capacity. Compost is also an ingredient in specialty soils. Compost-based specialty soils include materials like: golf course putting green rootzone mix, bioretention pond (rain garden) planting media, athletic turf growth media, manufactured topsoil, container mix (for potted plants), and potting soil.

Selling compost and compost-amended soils requires investment in a market development program, which can be a challenge for financially-strapped municipalities. A development program includes traditional marketing tools like branding, logos, informational flyers, advertisements and outreach programs, as well as more tailored programs like demonstration plots, outreach to gardening groups and K-12 schoolchildren, and internal marketing to other Borough departments.

Survey Analysis

To understand the market for compost in KPB, various surveys were given to different types of businesses and clubs to assess their understanding of compost and their potential interest in a KPB-generated product. The following are the results of the various surveys.

A 10 question survey was distributed to members of the Central Peninsula Garden Club, the Homer Garden Club, and Sustainable Homer. 101 responses were received and of those 98% were familiar with compost products, 96% add organic material/soil amendments to their soil, 86% purchase their soil amendments, and 96% could use more organic material in their soil. When respondents were asked how much compost they would use per year 2% responded with 0 cubic yards (CY), 40% would use 1-5 CY, 33% 6-10 CY, 7% 11-15 CY, 8% 15-20 CY, 4% would use 1-5 tons, 1% 11-15 tons, and 1% more than 20 tons. 70% of respondents felt that delivery was not an important consideration when purchasing compost and 83% would prefer selfhauling their compost. The distance people were willing to travel to get a compost product varied with 54% willing to travel less than 20 miles, 42% willing to travel 20-40 miles, 3% 40-60 miles and 1% willing to travel over 80 miles. Figures 3.0 – 3.2 show the results of the remaining questions asked on the survey.

Figure 3.0: Average importance level of compost characteristics

*Only 5 responses given, "price", "No pesticide residues - Aminopyralid for ex.", "Does it work-Fishy Peat does!", "Trace minerals", and "Iteration of materials composted".

Figure 3.1: Average concern level of compost contaminants

Figure 3.2: The price that respondents are willing to pay per CY of compost

The Parks and Recreation Department of the City of Soldotna filled out a similar survey. They generate 1-10 CY of green waste per week in the summer months, but do not compost it. They use 10-12 yards of wood chips, and about 5 yards of planting mulch per year mainly for maintenance of beds around trees and planter beds. They pay between \$11-\$15/CY for their soil amendments, which are purchased from a local wholesaler. The Department of Parks and Recreation intends to increase their use of compost and soil amendments, and would be willing to use locally produced compost in addition to, and/or in place of other soil amendments. Being

willing to travel less than 20 miles for a compost product, product delivery is an important consideration when purchasing compost to this department and they would want their compost delivered. The parks and recreation department would be willing to try a compost product that met their specifications and would minimize expense risks.

In the sports turf industry, a local golf course was surveyed. They were familiar with compost products and composts use in the sports turf industry. They produce between 1-10 CY of green waste per week and usually compost it. They are currently not using any soil amendments, but when used it is mainly for the maintenance of grass/lawns, planter beds and around trees. Fertilizer is used in addition to organic soil amendments. The golf course owner was not sure if engineered compost would be of any benefit for their business. A reduction in fertilizer cost and increased turf vigor were the seen benefits of soil amendment application. Their undelivered bulk soil amendments are free from the Alaska Garden & Pet Supply. This golf course does add organic amendments to its divot mix. They do not intend to increase their use of compost and/or soil amendments, but would be willing to use locally produced compost in addition to other organic materials. They do not have a specification for turf formulation nor an integrated pest management program. Delivery is an important consideration when making a purchasing decision for them, and they would be willing to travel over 80 miles to acquire a compost product. They would be willing to try a compost product that meets their specifications and would minimize expense risks.

The surveyed nursery was familiar with compost and its use in the nursery industry. They generate 1-10 CY of green waste per week but do not compost it. In their potting mixes they use peat and soil. Reduction in water use, increased plant growth and increased plant survival rates are the benefits seen by this nursery from the application of soil amendments. This nursery purchases "AD Meeks Peat/Topsoil mix" at \$25/CY from a local wholesaler. They do not intend to increase their use of compost and/or soil mixes. They would be willing to travel less than 20 miles to obtain a compost product. Delivery is an important factor when making a purchasing decision. They would be willing to try a compost product that meets their specifications and would minimize expense risks. This nursery felt that there is a market for the "home" gardener if the price of compost can be kept low and if the product is easy to transport or can be delivered.

Compost Markets in Alaska

Alaskan compost markets are limited, but appear to have some growth potential. In Anchorage, Green Earth Landworks (in conjunction with Alaska Green Waste Solutions) is a producer of compost. Green Earth Landworks' main customer is the Alaska Department of

Transportation, and while they are able to move their product, they have about 3,000 CY of compost available for sale. This inventory represents about 2 years of composting. They indicated that the market is stable, but not booming and they sell their compost for $65 - 95/CY^2$.

In April 2010, the City of Kodiak published the results of a pilot test looking at composting biosolids with wood chips³. The study also examined market conditions and concluded:

"The City will need to promote its compost to all horticultural businesses on Kodiak Island. In addition, because of its rural location, the City will need to be creative in market development efforts and promote the compost to other Alaska cities and towns as well as local residents. Large, local land managers such as the City Parks and Recreation Department, ADOT&PF, forestry operators, KIB (which manages the landfill), and Kodiak Support Services should also be approached. Application methods that can be marketed include soil incorporation soil blending, topdressing, soil remediation, and erosion control."

The City of Fairbanks, through Utility Services of Alaska, has also successfully marketed biosolids compost. They produce about 9,350 CY/year⁴.

Energy Products Markets

One of the technologies being considered in the KPB Organics Recycling Feasibility Study is anaerobic digestion (AD). AD, like composting, is a biological conversion process. The primary product from AD is called biogas. Biogas consists of a mixture of gases, as shown in Table 3.0

Component	Concentration
CH ₄	40 ~ 70 Vol%
CO ₂	25 ~ 55 Vol%
H_2S	0 ~ 5000 ppm
NH₃	0 ~ 1 Vol%
H ₂ O	0 ~ 10 Vol%
N_2	0 ~ 5 Vol%
O ₂	0 ~ 2 Vol%
H ₂	0 ~ 1 Vol%

Table 3.0: Biogas Composition

² Personal communication, Mrs. Christina Eneix, Green Earth Landworks, November 6, 2012

³ CH2M-Hill, "Biosolids Composting Pilot Test", City of Kodiak, AK, April 2010, p. 41

⁴ http://www.akwater.com/compost.shtml

How the biogas is handled and processed depends on the end market. Biogas from an anaerobic digester can be used in several ways: as a substitute for natural gas, either in boilers producing hot water and steam for industrial processes, in combined heat and power (CHP) applications to generate electricity (as well as heat for space heating), as a pure natural gas substitute (high-graded for insertion into the natural gas supply), for fueling a fleet of vehicles or as a fuel for fuel cells. It may also be possible to sell Renewable Energy Credits (RECs) based on the type and amount of energy recovered.

Electricity Production

CHP systems are becoming more widely used to generate electricity and recover heat from biogas produced by stand-alone digesters as well as from recovered landfill gas. CHP units can be reciprocating internal combustion (IC) engines, gas turbines, fuel cells and Stirling engines. Of these, the reciprocating IC engine generator is most frequently used. Biogas treatment needs for reciprocating CHPs are particulate (if any) removal and moisture removal. Heat recovery from the engine jacket and exhaust air can range from 3,500 to 6,200 BTU/kWh of shaft power.

This task examined potential recovered energy customers in close proximity to KPB solid waste facilities. Table 3.1 identifies these energy users.

<u>Location</u>	<u>Energy User</u>	<u>Electricity</u>	Space Heating	<u>Notes</u>	
		<u>Consumed</u>	<u>Demand</u>		
		(kwh/year)	(million BTUs)	1	
Homer	Transfer Station	200,000	3.50	2	
	Balefill Building	154,640	None-Electrical		
Kenai/Soldotna	CPL Multipurpose &	No data	No data		
	Baler Bldgs.				
	Skyview HS	1,520,611	11,198	3	
	ADOT& PF Hwy Maint	243,478	2,272	4	
	Facility				
Seward	Transfer Station	12,660	417	5	
<u>Notes</u>					
1. Data for FY 2012 (July 2011-June 2012)					

Table 3.1: Electricity and Heat Demands

- 2. Estimated from project design data
- 3. Converted from reported usage of 109,034 CCF natural gas
- 4. Converted from reported usage of 26,987 CCF natural gas
- 5. Converted from reported usage of 3,000 gallons fuel oil

The two main electric service providers for the energy users in Table 3.1 are the Homer Electric Association (HEA) and the City of Seward Electric Department (Seward Electric). HEA actively encourages net metering⁵ and allows interconnections from member-owned sources of renewable energy⁶. The net metering program allows a member to reduce the amount of electricity purchased from Homer Electric by interconnecting on-site generation facilities. Regulations governing net metering were adopted in January 2010 by the Regulatory Commission of Alaska; under these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Larger capacity renewable energy systems could negotiate a Purchase Power Agreement (PPA) with HEA; to date, all renewable energy connections fall under the net metering program. HEA has expressed its willingness to negotiate a PPA with KPB Solid Waste⁷.

Under either program, it may be possible for KPB Solid Waste to generate its own power for its facilities in Homer and in Soldotna, and sell the excess power (if any) back into the HEA grid under either the net metering rules or under a negotiated Purchase Power Agreement (PPA). Which approach to pursue will depend on the potential power generation level. Alternatively, it may be possible to work out agreements with other major energy users in the vicinity of the CPL to use power generated by KPB Solid Waste.

The City Council of Seward is deliberating a modification to the City Code that would allow interconnections from independent power producers into the Seward Electric grid⁸. Under this proposal, the KPB Solid Waste Department could produce its own power at the Seward Transfer Station but would have to sell it into the Seward Electric grid with one interconnection and buy power from the City through its existing interconnection, with the net charges or credits appearing on the monthly bill.

⁵ "Times Change, Values Remain", Homer Electric Association 2011 Annual Report

⁶ "Interconnection of Member-Owned Alternate Technology Generation Equipment", Sec. 4.9, Rules and Regulations of Homer Electric Association

⁷ Personal Communication, Mr. Brad Hibbert, Homer Electric Association, October 26, 2012

⁸ City of Seward, Alaska, Ordinance 2012-010, "An Ordinance Of The City Council Of The City Of Seward, Alaska, Amending Title 14 Of The City's Code Of Ordinances To Provide For Interconnection Of Small Renewable Energy Sources To The City's Electrical Distribution System, introduced September 10, 2012

Natural Gas Augmentation

Natural gas service in Homer and Kenai/Soldotna is provided by Enstar Natural Gas Company. The Seward area does not have natural gas service. Enstar now purchases natural gas from outside sources and is willing to consider recycled natural gas if it were produced by the KPB Solid Waste Department⁹. Enstar's procurement specification requires any purchased gas to meet the following gas quality requirements:

- A Gross Heating Value between 950 and 1,050 BTU per cubic foot
- Less than 4 lbs of water per million cubic feet of gas (<0.0007%)
- Less than 1 grain (0.00014 lbs) of H₂S per one hundred cubic feet of gas
- Less than 3% CO₂ (by volume)
- Less than 1% O₂ (by volume)
- No settleable particulate matter
- Filtered through a 0.3 micron filter to remove condensate

Most biogas produced by AD systems contains a Gross Heating Value of about 550 BTU/cubic foot, so amendment with a higher heating value fuel (i.e. propane) is usually needed.

Given the relatively small volumes of biogas potentially produced by a solid waste AD system in KPB, it is unlikely that the cost of gas clean-up to these specifications will be justified by the potential purchase price.

Vehicle Fleet Fuel

Converting vehicle fleets to run on natural gas or propane is increasing in popularity. There are about 120,000 natural gas vehicles (NGVs) on U.S. roads today and more than 15.2 million worldwide. According to the American Public Transit Association, nearly one-fifth of all transit buses were run by compressed natural gas (CNG) or liquid natural gas (LNG) in 2011. It can cost between \$12,000 and \$18,000 to convert an existing gasoline powered car to run on natural gas¹⁰, so it is usually more cost-effective to replace retiring vehicles with NGVs. It also requires a compressed gas refueling station.

The Alaska Sustainable Energy Act, Senate Bill 220, an energy policy bill passed in 2010, mandated the Alaska Department of Transportation & Public Facilities (ADOT&PF) to prepare a report on the feasibility of using CNG to power vehicles in the State. That report was published

⁹ Personal Communication, Mr. Mark Slaughter, Enstar Natural Gas Co., Oct. 31, 2012

¹⁰Natural Gas Vehicle Coalition, at http://www.ngvc.org/index.html

in January 2011¹¹. Phase 1 of that evaluation was a feasibility study and Phase 2 was the development of a pilot program. The Feasibility Study concluded that "The analysis indicates that CNG is a feasible fuel for certain Alaskan fleets and that an expansion of the CNG program would be beneficial towards Alaska's sustainability efforts." Phase 2 found 571 State vehicles, due for replacement soon, that could be replaced with NGVs.

The two fleets operating in KPB are operated by the School District and all other borough departments. KPB's two fleets consist of approximately 54 vans, pickups and utility vehicles and approximately 9 larger trucks. Of these, 7 are scheduled to be retired in 2013, 6 in 2014, 7 in 2015 and 6 in 2016. Replacing these with NGVs may be feasible if a CNG refueling station could be constructed.

The KPB School District contracts out school bus leasing and operation from a private company (First Student, Cincinnati, OH), but maintains their own fleet of 33 "activity buses" that could potentially be a market for conversion to or replacement with NGVs¹².

Summary

The primary sales market for compost in the Kenai Peninsula Borough is likely residential and commercial landscaping and gardening. Given that 73% of the individuals surveyed indicated they would be willing to purchase up to 10 CY of KPB compost per year, it is reasonable to conclude that with an effective and tailored marketing program, it is likely that KPB could sell between 2,000 and 3,000 CY per year of compost and compost-amended soils.

The recovered energy markets for biogas produced from anaerobic digestion are: electrical production, natural gas pipeline injection, and fleet vehicles running on CNG. Of those, the electrical production alternative appears to be the strongest market, given an active program by Homer Electric Association to encourage net metering for power capacities below 25 kW and a willingness to explore a Power Purchase Agreement for larger power capacities.

¹¹ Mercury Associates, Inc., "State of Alaska Vehicle Fleet CNG Pilot Program Recommendations/Costs", prepared for ADOT&PF, January 2011, available at <u>http://www.afdc.energy.gov/laws/law/AK/8480</u>

¹² Personal Communication, Ms. Nan Spooner, KPBSD, Nov. 5, 2012

Chapter 4 – Technology Analysis

Introduction

There are two main categories of organics recycling technologies: aerobic composting, and aerobic/anaerobic digestion. This chapter describes these various technologies and offers project profiles of organics recycling facilities using these technologies in climates and with similar feedstocks similar to KPB.

As part of this work, the project team developed preliminary process designs for both composting and anaerobic digestion to help frame the analysis of suitable technologies in this task and for the analysis of suitable sites. The quantities of food scraps and seafood wastes were derived from the feedstock characterization information presented in Chapter 1. The process design is described below and detailed calculations are contained in the Appendix.

Composting technologies utilize an aerobic (with oxygen) process to decompose organic materials such as food waste, biosolids, yard trimmings, water treatment residuals, animal manures, mortalities, and certain industrial solid wastes. It is a self-heating process that destroys pathogens and weeds seeds, and produces a material similar to soil humus. Well-stabilized (and mature) compost can be stored indefinitely and has a wide variety of product markets in residential and commercial landscaping, sediment and erosion control, agriculture, non-point source water quality management systems, disturbed lands remediation, and commercial horticultural applications. Composting technologies include turned windrow, aerated static pile, enclosed aerated static pile, and in-vessel. These technologies are described in more detail in the Task 3 report and examples of these types of systems are described below.

Digestion technologies are either aerobic or anaerobic; the former is a method of stabilizing organic wastes, while the latter produces a usable gas byproduct during the stabilization process. Both types of digestion are traditionally "wet" processes and produce both a solid residual and a wastewater effluent that must be further managed. Recent technology changes in Europe have introduced a dry form of anaerobic digestions (known as dry fermentation) which is now being developed in the U.S. Aerobic digestion requires more steps in its process flow and is therefore more expensive. Thus, anaerobic digestion (AD) will be the only digestion process further discussed in this task report. Examples of AD systems are presented below; detailed information on AD is presented in the Task 3 report.

Process Design

Due to the high costs of trucking organic wastes across the Borough, the initial preliminary process designs for organics recycling in KPB assume separate facilities in Seward, Homer and Soldotna, as follows:

• Composting in Seward – 600 tons/year of food scraps combined with 500 tons/year of woody wastes to produce 1,700 cubic yards of finished compost

- Composting in Homer 1,500 tons/year of food scraps combined with 1,000 tons/year of woody wastes to produce 3,500 cubic yards of finished compost
- Composting in Soldotna 8,850 tons/year of food scraps and seafood wastes, combined with 5,200 tons/year of woody wastes to produce 19,500 cubic yards of finished compost
- Anaerobic digestion/composting in Soldotna digesting 8,850 tons/year of mixed food and greenwastes to produce 34 million cubic feet of biogas per year (and, potentially, 2 megawatts (MW) of electrical power and 2 MW of thermal energy), followed by composting to produce 11,700 cubic yards of finished compost

The process design recipes include food scraps, woody materials, recycled compost (used as an inoculant) and oversized carbonaceous amendment from the final product screening process. The recipes are based on recommended process design criteria:

- A carbon nitrogen ratio of between 25:1 and 30:1¹³
- A mix moisture content of 50% 55%
- Volatile solids content of at least 80%
- A structural porosity (predicted Free Air Space) of between 40% and 60%

The process flow diagrams are daily volumes based on measured bulk density data from other projects, with certain assumptions about volumetric losses in processing. The composting facility alternatives were sized based on aerated static pile composting in concrete block bins (see an example in Figure 4.0). As noted elsewhere in this report, other methods of composting include turned windrows and vendor-supplied in-vessel systems. The anaerobic digestion process flow diagram is mass-based and is based upon European dry fermentation technology followed by aerated static pile composting.

It should be noted that these process designs are preliminary. The Feedstock Characterization report did not identify adequate quantities of woody wastes to support any of the composting alternatives above. It is not clear that enough woody materials could be sourced in the Borough to meet the process design criteria of a C:N ratio of 25:1 to 30:1. In addition, it may not be possible to capture 100% of the food scraps produced in the Borough.

¹³ 1 CY of food scraps requires mixing with approximately 2.5 CY of woody waste to achieve the desired C:N ratio 1 CY of fish waste requires mixing with approximately 6.1 CY of woody waste to achieve the desired C:N ratio.

Figure 4.0: Aerated Composting Bin

Technology Alternatives

Composting

Composting technologies include turned windrow, aerated static pile, enclosed aerated static pile, and in-vessel.

Windrow composting is widely practiced and is the predominate method used for composting materials like yard trimmings, but source-separated organics (SSO) can also be composted. When windrow composting, the material is placed in long trapezoidal-shaped windrows approximately six to ten feet high, eight to eighteen feet wide and turned or aerated mechanically using a front-end loader or commercial windrow turner.

Disadvantages to windrow composting of SSO include: a risk of vector attraction (of bears, rodents, birds, etc.) from exposed food scraps on the surface of the windrow, inability to control odors easily, difficulty of separating process leachate from rain-induced storm runoff and reduced composting efficiency in extremely wet and/or cold weather conditions (unless enclosed in a building).

The turned windrow system is not recommended for KPB for a year-round operation. It takes more space than other composting methods, it would have to be either housed in a building or only done seasonally, and precautions for bears, birds, and other wildlife would have to be

taken. In Yellowknife, Canada a composting pilot project using the turned windrow process was conducted.

The City of Yellowknife (62° 26' N, 114° 24' W), in collaboration with the local non-profit organization Ecology North, used a turned windrow system for its composting pilot project. The construction and operation of the composting facility (CF) from 2009 to 2011 cost approximately \$358,200.00.

There were originally 14 participants in the project, and by the end of 2011 the number had grown to 21 commercial/institutional businesses, condominiums, housing cooperatives, and offices. The key factors in getting participation consisted of businesses/institutions having managers and/or employees interested in composing, and removing any economic barrier by covering the cost of compostable bags, organics bins, and bin collection for the duration of the pilot project.

The (7) two-cubic yard and (9) four-cubic yard organics collection bins were collected on a schedule of once every one, two, or three weeks (depending on waste generation) by a local waste contractor. This contractor used an overhead tip garbage truck to collect the organics waste and deliver it to the CF. Based on the experience of loose organics freezing to the collection container, it was evident that the use of compostable bags was vital to a working organics collection system.

The 2,000 square meter (21,500 SF) CF was constructed within the boundary of the City Solid Waste Facility (SWF). An elevated base pad was constructed out of recycled asphalt and covered with a layer of gravel with a slope of 1.6% to direct surface runoff to the leachate collection pond. The pad was built to be higher in elevation than areas surrounding the landfill to prevent surrounding area leachate from running onto the base pad. The leachate collection pond had an approximate volume of 135 cubic meters (35,600 gallons) and was lined with a layer of non-woven geotextile and one layer of impervious single-textured high density polyethylene liner. The base pad was also enclosed with an electrified bear fence.

The allowed compostables consisted of yard waste (leaves, grass clippings, and plant trimmings), paper products (wet or food soiled boxboard and paper, napkins, facial tissues, wax-coated cardboard and box board), and food waste (fruits, vegetables, dairy products, eggs and egg shells, fish, shellfish, bones, grease and fat, cooked meat, small amounts of raw meat, bread, pasta, rice, cereal, flour, coffee grounds and filters, and tea bags). Many composting facilities don't accept dairy or meat products, but these windrows were able to get to a high enough temperature to make composting such items possible. On average 2 - 3 tonnes (2.2 - 3.3 tons) of food waste were delivered to the CF per week.

Upon food waste delivery to the CF, SWF staff would then combine shredded paper, box board, yard waste, and/or wood chips with the food waste. For ideal composting conditions, these feedstocks were combined to create a carbon to nitrogen (C:N) ratio of 20:1 to 35:1. The newly mixed feedstocks were then added to the end of the newest

windrow on the compost base pad and covered with yard waste and shredded paper to deter wildlife. The windrows were approximately 4 - 6 m (13.1 - 19.7 ft.) wide and 2.5 - 4 m (8.2 - 13.1 ft.) high, reaching 35 m (114.8 ft.) in length.

The windrows were turned once to twice a week between mid-May and mid-October using a front-end loader. The loader was used to pick up the material on one side of the windrow allowing the material to slowly fall back to the ground. This process was then repeated on the other side of each windrow.

The moisture content of the windrows was maintained at 45% to 60% for optimal composting. Windrows were watered each time they were turned. Watering was accomplished using a water pump and fire hose. Leachate from the leachate collection pond was used to water the windrows during active composting, once the leachate had been used, water was transported to the CF. Leachate was never used to water compost in the curing stage to prevent the introduction of pathogens. Roughly 10,000 – 12,000 liters (2,600 – 3,100 gallons) of water and/or leachate was irrigated into the windrows per week in 2011.

The composting time line was collection and windrow formation from August to May, active composting from May to October, Curing from October to August of the following year, with compost screening and sales taking place in August. Temperatures of 55°C (131°F) to 77°C (170°F) were maintained for at least 3 months during active composting. To extend the active composting season into winter, yard waste was placed on top of actively composting windrows for insulation. Areas of the windrows remained at temperatures above 40°C (104°F).

Generally there is a 40% to 60% decrease in volume of composting materials, and a 35% to 55% decrease in mass. After screening out unwanted materials such as noncompostable materials, large pieces of partially composted materials, and bulking agents the amount of Yellowknife Black Gold Compost was in the range of expected decrease in volume and mass. Finished compost was screened using a bobcat and 4' x 8' vibrating Pro-Screen shaker screen owned by the city. Screening 145 tonnes (160 tons) of finished compost took approximately 30 hours.

Wildlife attraction to the CF was a big concern. To prevent bear entry, an electrified fence was erected around the perimeter of the compost base pad (no bears were ever observed at or near the CF). Foxes and wolverines were seen jumping in between the electrified wires of the bear fence. Most problematic of all wildlife were the ravens and gulls. The windrows were covered with non-woven geotextile and eventually 1" galvanized poultry netting, to prevent the birds from pecking holes into the geotextile. This reduced the number of birds, but manually removing and replacing the covers every time the windrows were turned was too labor intensive. The best prevention to ravens and gulls proved to be covering food waste with a layer of yard waste.

The Canadian Council of Ministers of the Environment (CCME) Guidelines for Compost Quality require that turned windrows reach a temperature of 55°C (131°F) or greater for

a minimum of 15 days and be turned at least 5 times in that period, the CF windrows met this requirement. The temperature of the windrows was taken twice a week on Tuesdays and Fridays with a ReoTemp compost thermometer with a 36" stem. 10 to 20 temperature measurements were taken from each windrow. Other CCME Compost Quality Guidelines include testing for pathogens, trace elements, foreign matter, and maturity. Yellowknife Black Gold passed all of these tests ranking it as category A compost which can be used for any application.

Yellowknife Black Gold Compost was sold to the public in a two day sale at the CF. The compost was sold by the container or pick-up truck load. Pricing for the compost was based on the current price for soil amendments in Yellowknife and the price of municipally-produced compost in other Canadian communities. The demand for compost in Yellowknife and surrounding areas is high due to a lack of available soil locally.

The most helpful tool in having a successful composting operation proved to be education and communication with the community. CCPP created a variety of educational posters, guides and decals to clarify matters regarding composting to the public. Involving local schools in the CCPP helped raise community awareness, in addition to holding an open house at the CF each year. The City also created a section devoted to "compost" on its website, where detailed information on backyard and centralized composting was posted including all CCPP educational sheets.

Aerated static pile composting was developed as a composting approach for the beneficial reuse of sewage sludge (biosolids) and is a technology well-suited to wet, heavy materials like sludges and manures. The use of forced aeration in ASP serves both to maintain aerobic conditions more thoroughly and completely within the static pile (provided adequate porosity exists), and to dry out the composting material. As ASP piles are not turned or agitated after forming, the prerequisite of adequate porosity to maintain aerobic conditions is more important.

The blowers used in ASP composting are generally "off-the-shelf" units, with horsepower varying from 1 - 2 HP to upwards of 10 HP depending on pile size. Aeration systems are sized to provide a minimum of 500 cubic feet per minute (cfm) of air per dry ton of volatile solids in the mix. Aeration rates are often controlled by simple on-off timers¹⁴. Aeration systems can be run in either "positive" (blowing air into the pile) or in "negative" (pulling air into the pile) mode. ASP systems in positive air mode can have odor-related issues; and, if inside a building, the entire building air volume may have to be treated with a biofilter. Negative mode aeration reduces the volume of air to be treated, and, in some cases, emissions can be treated with small individual piles of finished compost at each blower. ASP's are often covered after pile

¹⁴ Variable-frequency drives are often used to ensure an ongoing supply of oxygen to the pile; fan speed is dictated by pile temperature.

building with a 6" layer of finished compost, which acts both as an insulation blanket to trap heat and as an *in-situ* biofilter (see Figure 4.1).

Figure 4.1: Aerated Static Pile Layout

An advantage of ASP composting is that individual piles can be sized to accommodate daily waste generation quantities. Individual piles are practical where raw materials are available for composting at intervals rather than continuously. A disadvantage is that the aeration piping may not be reusable more than once, depending on aeration system configuration, aeration pipe type (i.e. disposable ABS perforated drain pipe versus reusable perforated PVC pipe), and available labor.

Like turned windrow, ASP could work in KPB, though using an enclosed ASP composting process has several advantages over open-air methods: elimination of adverse weather effects, better process control, and improved opportunities to manage the air emission and wastewater sidestreams from the process. Enclosed static pile composting relies largely on forced aeration. The Western Lake Superior Sanitary District in Duluth, Minnesota has been using an aerated static pile system.

Western Lake Superior Sanitary District (WLSSD) Organic Composting Site Duluth, Minnesota¹⁵

The WLSSD composting site in Duluth, MN (46° 47' N, 92° 6' W) processes 3,900 tons of organic matter each year averaging 60 - 75 tons per week. The feedstocks for this CF are SSO and yard waste. Private haulers, paid directly by the customer for collection and hauling, haul SSO from businesses and institutions to the CF. WLSSD operates 6 food waste drop sites for area residents and small business to dispose of their food waste. Each of these sites is overseen by a host business where compostable bags are available for purchase or may be provided. Customers benefit from source separating

¹⁵ Personal Communication, Ms. Heidi Ringhofer, Solid Waste Services Director, September 17, 2012

their organic materials by avoiding a state tax on solid waste, and various management and tipping fees.

The use of forced aeration in aerated static piles maintains aerobic conditions more thoroughly and completely within the static pile. The feedstocks (food waste, yard waste, and wood chips) are ground together using a Schuler mixer and then formed into 7 feet high, 12 feet wide (at base), and 100 - 125 feet long windrows. The piles are generally loose in texture, having 50% - 60% moisture content, and a C:N ratio of 25:1 to 30:1. These piles are placed on aeration pipes that blow air into the piles. The entire composting process takes about 6 months.

The equipment used at the CF includes a loader (3 yd bucket), windrow turner, bobcat, farm tractor, and trommel screen. The WLSSD composting site requires one full-time year-round position for operation and management. WLSSD also invested in a bagging machine so they can bag their own finished compost product, Garden Green[®].

The CF is located on a 200 ft. x 300 ft. concrete pad. WLSSD has found that the use of a concrete pad has improved the compost operation. There is better runoff control, less loss of compost material, easier clean-up of litter and waste, and less abuse to the equipment. WLSSD recommends a simple design, such as a concrete pad, similar to their facility. Cold weather conditions at the CF occasionally affect equipment start-up, and cause chunks of food and other material to freeze when screening.

The compost is sold in bulk and in one cubic foot bags under the Garden Green[®] name. Homeowners and Landscapers are the main consumer of Garden Green[®]. It is sold for \$27 per yard loaded at retail, and \$20 at wholesale. WLSSD never makes enough compost to meet the market demand. If they were to recreate their CF today, differences would include designing their CF to be bigger, moving it further out of town and verifying prevailing winds.

There are many subdivisions of composting technologies that fall under enclosed ASP. These include extended ASP, covered ASP, tunnel-type ASP, and containerized ASP. Of these, the containerized ASP system is of greatest applicability to KPB.

Containerized aerated static pile compost systems are enclosures that resemble ocean-going shipping containers in size and configuration. Although usually not agitated (hence "static pile") one vendor offers turning augers inside. They are usually aerated by low-horsepower centrifugal fans. These systems are provided by private technology companies.

One technology provider is Engineered Compost Systems (ECS), based in Seattle, WA (<u>www.compostsystems.com</u>) who offers both in-vessel and ASP compost systems. The ECS systems operate in batch mode. Their container system is the "CV Composter", which is a container-based system using insulated 40 CY vessels with stainless steel interiors. Figure 4.2 is a photograph of ECS' CV Composter. ECS has been in business since 1999, and has over 40

installations of its technologies around the U.S. and Canada (listing 9 CV Composters, 5 SV Composters, 10 AC Composters, and 9 individual ASP facilities).

Figure 4.2: ECS CV Composter

Containerized ASP Systems may be suitable for the scale of composting facility contemplated in KPB as the enclosures are insulated for use in cold weather, are scalable to KPB organics quantities and are vector-resistant. The SV unit is a stationary composting unit similar to the CV unit (Figure 4.3).

Figure 4.3: ECS SV Composter

Livingston, MT Waste Water Treatment Plant (WWTP) Biosolids Composting Facility

The WWTP CF in Livingston, MT (45° 40' N, 110° 34' W) uses the ECS CV Composter. The facility consists of four (4) 40 CY CV Composter Vessels, a 475 CY Luck/Now compost mixer, a loading conveyer, Comptroller[™] (aeration control and data monitoring system), and a biofiltration system. The staffing level at the CF consists of one full-time employee. Per ECS, these CV vessels are designed for a 20-year service life.

The feedstocks used at Livingston CF are biosolids and wood chips. The approximate compost production is 1,467 CY/year. This approximation comes from an estimated total daily mix volume of 6.7 CY/day or total daily mix weight of 3.11 tons.

Feedstock recipes are developed by weight to achieve the best management practices for aerobic composting methods. The feedstocks are placed into the Luck/Now mixer. The mixer includes scales with large displays for achieving accurate mix ratios, and RF controls so that it can be operated from the front end loader cab. The mixer then discharges its contents onto the vessel loading conveyor and into the CV Vessel. The invessel retention time for composting in the CV unit is about 21 days. This process is followed by curing the compost in either passive windrows or small ASP systems. The CV Vessels are moved and unloaded using a roll-off truck.

Another composting technology is rotary drum composting. Rotary drum composting systems are used for MSW, animal mortalities, meat-packing and rendering wastes, and small-scale institutional (i.e. prisons, university dining halls) food wastes. This approach uses a horizontal rotary drum to mix, aerate and move the material through the system. Rotary drum composting for MSW has been practiced since the early 1970's and Bedminister Bioconversion and Conporec are two manufacturers of large, MSW composting systems. Other manufacturers make smaller systems.

The drum is mounted on large bearings and turned through a bull gear. A drum about 6 feet in diameter and 16 feet long has a daily capacity of approximately 4 CY with a residence time of three days. In the drum, the composting process starts quickly; and the highly degradable, oxygen-demanding materials are decomposed. Further decomposition of the material is necessary and is accomplished through a second stage of composting, usually in windrows or aerated static piles. The primary advantage of rotary drum composting is it usually achieves the requisite pathogen kill time-temperature relationship (>55° C for three days), and it can reduce potential odor problems due to rapid decomposition of highly degradable organics, which are often the source of odor problems.

Air is supplied through the discharge end and is incorporated into the material as it tumbles. The air moves in the opposite direction to the material. The compost near the discharge is cooled by the fresh air. In the middle, it receives the warmed air, which encourages the process; and the newly loaded material receives the warmest air to initiate the process. These types of units can also be used as mixers to combine feedstocks prior to the composting process.

Green Earth Landworks with Alaska Green Waste Solutions at Anchorage, Alaska^{16,17}

After looking into the possibility of windrow and static pile composting, Alaska Green Waste Solutions in Anchorage decided on using an in-vessel composting method, a rotating BioReactor drum by XACT systems. The small footprint and large capacity was

¹⁶ Personal communication, Ms. Christina Eneix, Green Earth Landworks, November 6, 2012

¹⁷ X-ACT Systems Case Study, BioReactor Composting System, Food Waste

a desirable feature of this system. Alaska Waste purchased a 10' diameter by 30' long vessel and installed it in 2009.

Alaska Green Waste Solutions collects vegetable and fruit waste from grocery stores such as Costco, Fred Meyer, and Carrs/Safeway. Alaska Waste provides grocery stores willing to participate (at a small rental rate) 64-gallon tipper carts to dump their vegetable and fruit waste. Horse stables also contribute their manure to this composting operation. Roll off containers are located at the local stables and picked up weekly. Alaska Waste hauls both the produce waste and manure to its composting system housed in a building on site. The composting system is comprised of the BioReactor, 4 conveyors, and a mixer. The heat off of the BioReactor helps heat the building it is housed in.

The produce waste is loaded into the mixer and allowed to sit over night to allow excess liquid to drain off. The following morning the mixer is started and 2 parts wood chips are added to 2 parts produce waste, and 1 part manure. A proprietary microorganism accelerant is also added to the mix as. After being mixed for 20 minutes, the contents are discharged onto a conveyor that feeds into the BioReactor.

The waste materials take about 7 days to cycle through the BioReactor drum, and about 3 batches of compost are produced each week. It rotates only a few hours each day. According to the operator, with the help of the microbial additive, the temperature of the composting material is kept in the range of 115°F and 145°F. The compost that comes out of the BioReactor has no identifiable particles and is light and fluffy in consistency. The total volume is reduced by about 20%.

The compost is then moved to GEL where it is cured in windrows or static piles. It is then mixed for different projects such as landscaping and erosion control and sold. GEL sells their compost for between \$65.00 and \$95.00 per cubic yard. Their main consumer of compost is the DOT.

Anaerobic Digestion (AD)

Anaerobic digestion is a biological treatment process. The lack of oxygen results in waste stabilization by a different group of microorganisms who produce a usable energy source in the form of biogas (mostly methane). The products of anaerobic digestion are methane, carbon dioxide, trace gases and stabilized solids. Biogas production ranges from 3,000 to 6,000 cubic feet per ton of incoming SSO, depending on digestion technology. The biogas has an average methane content of 55% - 60%, but pretreatment would be needed to remove impurities before it can be used for energy production¹⁸.

There is a growing interest in the U.S. in the use of anaerobic digestion for recycling SSO.

¹⁸ Van Opstad, B. "Evaluating AD System Performance for MSW Organics", *Biocycle*, Vol. 45, No. 11, November 2006, p. 35-39, and "Managing AD System Logistics for MSW Organics", *Biocycle*, Vol. 45, No. 12, December 2006, p. 39-43.

Anaerobic digestion is a feasible option for KPB. The drawback is extra space needed for the digest to be composted further in windrows or ASPs, but anaerobic digestion is the only process that produces a viable energy byproduct.

High-Solids Anaerobic Digestion Facility at Bad Oeynhausen, Germany

The organics recycling facility in Bad Oeynhausen, Germany (52° 12' N, 8° 48' E) uses the Eggersmann/Kompoferm SMARTFERM technology, which is a dry fermentation anaerobic digestion system. The 5,000 SF facility consists of four (4) separate reactors and handles 4,500 tons/year of source-separated "brown bin" wastes (brown bin wastes in Germany consist of kitchen scraps, peels, leftover food, coffee filters, tea bags and garden wastes) and vegetative greenwaste. The mix ratio between brown bin and greenwaste materials is about 50/50, although the brown bins contain vegetative residuals in addition to food scraps.

Figure 4.4: SMARTFERM Dry Fermentation Unit

The facility produces 13.6 million cubic feet of biogas per year, which is combusted onsite in a 100 KW Combined Heat and Power (CHP) generator, producing 822,334 kilowatt-hours per year (kWh/yr) of electrical power and recovering 3,818 million British Thermal Units per year (mmBTU/yr) of heat. Electricity is sold into the utility grid at \$0.20/kWh and the recovered heat is used for on-site space heating. Source-separated organic (SSO) wastes are loaded into one of the four reactors with a front-end loader. Once full, the reactor is closed and the 21-day fermentation process begins. The temperature of the SSO is elevated to 131° F. (55° C.) by aerobic composting through air injected via nozzles in the digester floor. This is the required

pathogen inactivation temperature threshold. Once the SSO has achieved the targeted temperature, the aeration is stopped and percolation begins. Percolation is a process where a leachate-like liquid is sprayed onto the SSO biomass, filling the biomass pore spaces with liquid, and shifting the bacterial activity from aerobic composting to anaerobic digestion, producing biogas. During the second half of the fermentation period, biogas is recirculated through the aeration nozzles in the floor to enrich the methane content of the biogas. Biogas is collected from all four reactors and the percolate tank below the reactors and stored in a flexible membrane storage bag above the reactors.

At the end of the 21-day cycle, the percolation process is stopped and the aeration system is turned on again. This flushes the methane-rich biogas from the reactor, allowing the reactor to be opened. When the methane content drops below a prescribed level, the exhaust is re-directed to a biofiltration unit, which remains in operation handling reactor air volumes during reactor unloading and reloading. The sanitized digestate (the solid residual left over after fermentation) is arrayed in windrows for compost curing and maturation.

Figure 4.5: SMARTFERM Site Layout

The system was field-assembled from factory-manufactured components. In-field construction took about 30 days.

Figure 4.6: Field-assembly of Bad Oeynhausen, Germany Digester

The biogas produced contains about 60% methane and low levels of contaminants. It is combusted without pre-treatment in a 2G Cenergy 100 kW CHP generator. Heat is recovered from both the engine jacket and the exhaust air stream.

The digestate removed from the reactor meets the USEPA standard for the beneficial use of sewage sludge (Process to Further Reduce Pathogens [PFRP] at 40 CFR Part 503) which has become the surrogate measure of pathogen inactivation in many food scraps organics recycling facilities. The digestate is composted in turned windrows for market maturation for a period of several weeks. The finished compost is sold to homeowners and landscaping companies.

The Bad Oeynhausen facility was constructed in 2011 for a capital cost of \$2.2 million and has an operating cost of approximately \$15/ton. The first American SMARTFERM system is under construction in Monterey, CA and is expected to come on-line in January 2013. The SMARTFERM technology is available from Zero Waste Energy Development in Lafayette, CA (<u>www.zerowasteenergy.com</u>).

Summary

Based on the evaluation of the different organics recycling technologies in this report, it is suggested that KPB use an enclosed ASP system such as the ECS CV Composter. It is cold weather compatible (not season dependent), bear and animal proof, and is suitable for the KPB feedstocks. Table 4.1 on the following page contains a quick reference technology evaluation matrix.

Table 4.1: Technology Evaluation Matrix

Technology Characteristics	Turned Windrow	Aerated Static Pile (ASP)	Enclosed ASP	In-vessel Rotary Drum	Anaerobic Digestion
Cold Weather Compatible	No	No	Yes	Yes	Yes
Bear/Animal Proof	No	No	Yes	Yes	Yes
Suitability for KPB	Poor	High	High	High	High
Feedstocks					
Batch or Continuous	Continuous	Batch	Batch	Continuous	Either
Seasonal	Yes	Yes	No	No	No
Infrastructure	Land Area	Land Area	Land Area and/or	Building and/or	Flammable Gas
Requirements ¹⁹			Building	Land Area	Management
Expansion Ability	Expand Size of Base	Build More Piles	Increase Building	Limited Without	Additional Units
	Pad		Size/Additional Units	Multiple Units	
Ease of Operation	High	Medium	Medium	Medium	Low
Relative Capitol Cost	Low	Medium	High	High	High
Typical Technology Sizing	4,000 CY /year	4,000 CY /year	40 CY or 50 CY sized	Capacity Starts at	4,500 tons/year –
(Capacity)	per acre	per acre?	Units	4 CY/day	73,000 tons/year

Table 4.2: Total Estimated Available Feedstock Tonnage per Year in KPB

Site Location	Tonnage
Seward Transfer Station*	686.52
Homer Transfer Station	2,347.09
Central Peninsula Landfill	11,600.07
Total:	14,022.16

*Seward Transfer Station amounts are already included in CPL's number and are omitted from the total row with the exception of woody wastes.

¹⁹ Other than normal infrastructure needs of power, water, sewer, and store water management

Chapter 5 – Siting Evaluation

Introduction

This chapter focuses on an evaluation of sites to potentially locate an organics recycling facility in the Borough. The Kenai Peninsula Borough (KPB) owns over 1,500 parcels of land within the Borough. The site evaluation was limited to borough owned lands, as it was believed that a suitable site(s) could be found within that inventory of sites. The land was evaluated for adequacy regarding size, proximity to sensitive receptors, environmental features, and site topography, with the goal of identifying any issues that might cause permitting or implementation constraints to a proposed site and recommending alternatives to remove those constraints.

Composting Facility Siting Criteria

Siting a composting facility properly is one of the key factors in ensuring the development of a successful facility. Arguably, poor site selection is the principal cause of many failed composting facilities. Siting must consider factors that include environmental features, such as proximity to sensitive natural and human resources, as well as infrastructure-related issues including availability of utilities, road access, and zoning constraints. The KPB GIS department assisted in analyzing the Borough owned lands by applying search/selection criteria to all such parcels included in the borough's GIS database. Parcels meeting the following criteria were selected for further analysis.

Search/Selection Criteria

- Minimum parcel size:
 - o Soldotna 5 acres
 - Homer 1.4 acres
 - Seward 0.8 acres
- Not in the 100-year floodplain
- Not in "Lowland Wetlands"
- At least 1,000 ft distant of any churches, parks, hospitals, shopping centers, etc.
- At least 1,000 ft distant from any homes
- At Least 50 ft from any property line, well, or stream
- Not located in any "Local Option Zoning" areas
- Not in any KPB Habitat Protection Areas
- Within 20 miles of Soldotna

- Within 10 miles of Seward
- Within 12 miles of Homer

Some states in the U.S. require additional criteria such as wind speed and direction, and groundwater proximity and quality. As these are not required in the state of Alaska, these additional criteria were not considered in this siting evaluation.

An important point about siting criteria is that "out-of-sight, out-of-mind" is often true about composting facilities. This is not to suggest that remoteness of a location allows for improper facility operation, but rather that "people smell with their eyes" and a dense buffer surrounding a site is preferable.

Methodology

With the help of the KPB GIS department, multiple site locations were found. These possible locations were found by limiting the searchable area and only considering Borough owned land. The "Overview" maps in the Appendix show the search areas from the Soldotna, Seward, and Homer areas, respectively.

For this study, the Borough GIS group considered any property with improvements valued over \$5,000.00 to be a residence to further reduce possible properties and meet the "1,000 ft. distance from homes" criteria. This constraint removed some of the existing transfer stations and landfill sites; subsequently they were added back into the list of site locations under consideration due to the compatibility of the existing land use.

Two possible site locations were found in Seward, five in Homer, and six in the Soldotna/Kenai area. These site possibilities will be further described in the next section. Composting facility sites were not considered for remote areas such as Tyonek, English Bay, and Seldovia or for areas such as Hope, Moose Pass, Cooper Landing or other unincorporated communities that are on the road system. Those areas either do not have adequate population to generate enough SSO to justify a small facility, or they are too far away from other sites to make it practical to haul SSO to them from other areas.

Description of Sites

Kenai/Soldotna

The Kasilof transfer site, Funny River Road transfer site, Sterling transfer site, and the Nikiski transfer site were removed as possibilities due to their remoteness from the main population of the area. Other than their remoteness, these four locations were suitable, and met the criteria.

The Central Peninsula Landfill and the Kenai transfer station were found to be suitable. They both met the criteria of not being in the floodplain; lack of lowland wetlands; adequate land for a composting facility; enough distance from homes, public gathering areas, property lines, wells, and streams; not located in a "Local Option Zoning" area; and not in a habitat protection area. The Kenai transfer site is located in an area that makes it publically accessible to a large portion of the population, as is the case for the Central Peninsula Landfill site.

Homer

In Homer, the Bluegrass Street Parcel, and the North Fork Road Parcel were removed as potential candidates due to their remoteness to the main population.

The Old Sterling Hwy. Parcel in Homer is suitable with the exception of a few reservations. This parcel meets the requirements of minimum acreage, not in the wetlands or floodplain, and zoning, but the adjoining property on the north side contains a residence which is less than 1,000 ft. away. The property itself is only about 660 ft. by 660 ft. consequently building in the most-distant south corner would still not provide the needed 1,000 ft. distance making this property an inadequate site location for a composting facility.

The Diamond Ridge Road Parcel in Homer was also found to be suitable but is not an option owing to the fact that this property is currently reserved for the site of a new fire station. Additionally if residences were to be built on the adjacent properties, the 1,000 ft. minimum setback distance would not be met.

The Homer Landfill/Transfer Site is the most suitable site location in Homer. The challenge with this location is that most of the land that is not in the lowland wetlands is already built on or is part of the old landfill. There is a 3 acre section on the north part of this parcel that is suitable and meets all criteria and would be the optimal location for a composting facility for the Homer area.

Seward

The Old Exit Glacier Road Parcel in Seward was found to not be a suitable location. If properties surrounding this site were developed the 1,000 ft. minimum distance requirement would not be met because of the narrowness of this parcel.

The Seward Transfer Site Parcel is the most suitable location for a composting facility in Seward. This site meets the listed criteria of not being in the floodplain; lowland wetlands; contain enough land for a composting facility; enough distance from homes, public gathering areas,

property lines, wells, and streams; not located in a "Local Option Zoning" area; and not in a habitat protection area.

Summary

The above Borough owned sites were reviewed and evaluated with regard to their potential suitability as a site for a composting facility handling yard trimmings, land clearing debris, food scraps, sewage sludge, or a combination of those feedstocks. The use of sewage sludge as a feedstock is only viable for a Borough-wide facility, not for a pilot-scale facility. The sites were evaluated based on the GIS data provided by KPB.

Of the sites that were evaluated, the Central Peninsula Landfill is the most suitable site for a composting facility in the Soldotna/Kenai area, with the Kenai Transfer Station being the second most suitable option. For the Homer area, the Homer Landfill/Transfer Station is the recommended location for a composting facility. For the Seward area, the Seward Transfer Station is the suggested site for a composting facility.

Chapter 6 – Permits and Approvals

Introduction

This chapter discusses the regulations and permitting required for an organics recycling facility in the KPB. Discussions with the Alaska Department of Environmental Conservation (ADEC) and local City officials gave clarification on required permit and zoning needs. There are currently no solid waste digestion or source-separated organic solid waste processing regulations in Alaska.

ADEC

There are very few regulations related to composting, but composting falls under 18 AAC Chapter 60 – Solid Waste Management, specifically 18 AAC 60.010 (h) which applies to facilities used to store more than 50 tons of solid waste before disposal. Regulations only require the operator of a facility to meet specified requirements if ADEC finds that the facility is causing or contributing to a nuisance.²⁰ 18 AAC 60.010 (e) allows disposal of organic waste from a commercial slaughterhouse or fish processing waste by applying the waste to agricultural land for soil enhancement purposes with specific conditions of placement. Solid waste permit requirements are required per 18 AAC 60.200. Under the list of exemptions 18 AAC 60.200 (a) (9) provides exemptions for 'a reuse, recycling, or source recovery facility unless the department determines that the facility is causing or is likely to cause excessive odor or other problems such as combustion, blowing litter, water quality degradation, or vermin attraction'. 18 AAC 60.200 (a) (12) provides exemptions for fish waste disposal under 18 AAC 60.010 (e). Excerpts from 18 AAC 60 are attached in appendix A.

If site development disturbs more than one acre, construction of the project falls under the EPA's Construction General Permit. Preparation of a Storm Water Pollution Prevention Plan (SWPPP) is required as well as filing a Notice of Intent (NOI). The NOI must be filed with EPA at least seven days before construction begins. If more than five acres is disturbed, the SWPPP must be submitted to ADEC for review, and a plan review fee is required per 18 ACC 72.995 Table D.

Plan review is not required if storm water is not collected or treated. If storm water is collected, a storm water discharge permit is required and plans must be submitted for review

²⁰ Phone Interview, Ms. Rebecca Colvin, Program Director, ADEC, Solid Waste Program, February 28, 2013

per 18 ACC 72.600.²¹ For example, the Golden Heart Utilities Composting Facility (GHUCF), which composts biosolids, does have a storm water permit. The composting yard is sloped to keep all storm water and leachate on the property. The asphalt composting pads (320'x160') and storage pad (400' long) have a 2 degree slope to keep all leachate and storm water on the property. The pads drain into a centrally located drainage ditch which ties into the wastewater treatment plant via piping. GHUFC uses aerated static piles to compost year round.²² Depending on the final site(s) selected and the proximity to receiving streams, KPB Solid Waste may wish to include a collected storm water management system in the facility's final design. Runoff from composting facilities handling food wastes can contain significant levels of nutrients, biological oxygen demand (BOD), chemical oxygen demand (COD), and coliform bacteria.

City of Kenai

The Kenai Borough 'Firewise site', located on KPB parcel # 04301036, has been identified as a potential site for an Organics Recycling Facility. The parcel is zoned for Recreation by the City of Kenai and the City will require a Conditional Use Permit (CUP) for an organics recycling facility to be located on the site. To process a CUP through the Commission it takes a minimum of 5 weeks. An application must be submitted 3 weeks prior to a Commission Meeting. Following the Commission Meeting there is a 15 day appeal period. If there is an appeal, it will be put to the Council acting as the Board of Adjustment. This process can take an additional 60+ days.²³

City of Homer

The Homer Transfer Station, located on KPB parcels #17367004, #17316056, and #17316057, has been identified as a potential site for an organics recycling facility. As this sites' current function is similar to organics recycling there are no required permits from the City of Homer. If the organics recycling facility was to be located elsewhere a Conditional Use Permit might be required.²⁴

City of Seward

The Seward Transfer Site, located on KPB parcel #14424004, has been identified as a potential site for an organics recycling facility. The property does fall in the City Limits, but there are no zoning permits required as the current land use is comparable to organics recycling. If a

²¹ Phone Interview, Mr. William Ashton, Storm Water & Wetlands Engineer, ADEC, Storm Water Program, March 5, 2013

²² Phone Interview, Mr. Scott Creel, Composting Facility Foreman, Golden Heart Utilities, March 7, 2013

²³ Personal communication, Ms. Marilyn Kebschull, Planning Administration, City of Kenai, March 4, 2013

²⁴ Phone Interview, Mr. Travis Brown, Planning Clerk, City of Homer, March 12, 2013

building is built for the composting facility a building permit is required and may include further permits pertaining to utilities and a floodplain review.²⁵

²⁵ Phone Interview, Mr. Dwayne Atwood, Planning Technician, City of Seward, March 12, 2013

Chapter 7 – Cost Estimates

Introduction

The purpose of this work was to develop preliminary, planning level estimates of capital and operating costs based on costs of similar facilities elsewhere. The capital costs for organics recycling facilities are similar to those for any solid waste management facility: land acquisition, site development, buildings, roadways, fencing and security, and materials handling equipment. As organics recycling involves biological processes to convert wastes to energy and/or soil amendments, there is also a technology cost. Composting and anaerobic digestion, the two processes evaluated in this study, can be done with generic approaches, or with technologies purchased from vendors.

Operating costs for organics recycling facilities will include labor, fuel, electricity, equipment maintenance, disposal of unprocessable materials, product marketing, product sales, and, possibly, acquiring feedstocks. There may not be enough woody wastes in the KPB solid waste stream to support a facility and it may be necessary to purchase wood chips, sawdust, and similar carbonaceous materials.

In addition to the costs for the facility itself, there will also be costs involved in collecting and transporting organic wastes to the facility. This task report explores some of these issues as they relate to the feasibility study and will be explored further in a subsequent task.

Cost Estimates

Collection Costs

There are three main alternative methods for organic wastes (food scraps, soiled paper, yard trimmings, etc.) to get to a new organics recycling facility:

- Citizens and businesses drop off their wastes at KPB transfer sites and stations into dedicated 20-CY roll-offs (or smaller) similar to the ones now used for garbage
- Alaska Waste (the primary private-sector trash hauler in KPB) or KPB Solid Waste expands to offer curbside residential and commercial collection of source-separated organics (SSO)
- Alaska Waste or KPB Solid Waste initiates curbside collection of residential and commercial SSO co-collected with trash in something similar to the "Blue Bag Organics" program in Minnesota.

For the drop-off alternative, KPB citizens and businesses would bring their SSO to a transfer site or station and KPB would have its hauler bring the roll-off to the composting facility. If KPB built a centralized compost facility at, or near, the CPL landfill, the estimated costs for this alternative are shown in Table 7.1. It is assumed that SSO roll-offs would be pulled weekly from the larger transfer facilities, and bi-weekly from the more remote transfer sites.

Haul Route	Unit Cost (per pull)	Pulls/Year	Total Annual Cost
Kenai TS to CPL	\$65.56	52	\$3,409.12
Homer TS to CPL	\$787.50	52	\$40,950.00
Seward TS to CPL	\$900.00	52	\$46,800.00
Nikiski TS to CPL	\$105.38	52	\$5,479.76
Anchor Point to CPL	\$700.00	26	\$18,200.00
Cooper Landing to CPL	\$187.81	26	\$4,883.06
Crown Point to CPL	\$279.32	26	\$7,262.32
Funny River to CPL	\$95.59	26	\$2,485.34
Hope to CPL	\$297.12	26	\$7,257.12
Kasilof to CPL	\$78.77	26	\$2,048.02
McNeil Canyon to CPL	\$1,137.50	26	\$29,575.00
Ninilchik to CPL	\$159.12	26	\$4,137.12

Table 7.1. Costs for SSO Drop-off

Alaska Waste now provides curbside residential and commercial waste collection services in the Borough, concentrated mostly in the areas of Kenai, Soldotna, Seward, and Homer. Their rates vary for weekly residential service from \$28.71/month to \$33.02/month for "within City limits" to \$27.90/month to \$32.09/month for "outside City limits". Their rates for commercial pickup vary with collection container size, pickup frequency, and location relative to City limits. For a

weekly pickup of a 3 CY container, their fee varies from \$96.78/month "within City limits" to \$94.05/month "outside City limits"²⁶.

It is not known if they would be willing to start a parallel collection service for SSO, or whether KPB citizens and businesses would be willing to pay a fee for such a service. In other communities that have implemented SSO diversion, residential trash pickup frequencies are often reduced to bi-weekly (with weekly SSO pickup) and commercial accounts can reduce the size and pick-up frequency of their trash dumpster or compactor. These changes in collection frequency and container size can often offset the cost of SSO diversion, but bi-weekly residential trash collection has been reported to cause customer concerns about putrescible wastes like dirty diapers.

If Alaska Waste were not willing to offer SSO collection, KPB Solid Waste could consider offering that service to Borough residents. Based on rate studies of SSO diversion elsewhere, this service could cost approximately \$5.53 per participating household per month²⁷. If the service were concentrated in the cities of Kenai, Soldotna, Homer and Seward, the potential annual costs for this are shown in Table 7.2.

As noted earlier, a few communities are now opting for co-collection of SSO with trash. In the Blue Bag Organics program in Minnesota, residents pay for the service, and receive a collection container and 60 compostable plastic bags. The cost of the service is a function of the haul distance to the Materials Recovery Facility (MRF). As KPB does not have a MRF where the SSO could be separated and diverted to an organics recycling facility, this option may be difficult to implement.

²⁶ Rates taken from Alaska Waste website at http://www.alaskawaste.net/

²⁷ Goldsmith, A., "Source Separated Organics Collection Model – Projecting the Impact in Your Community", presented at the 2012 Southeast Food Waste Reduction Conference

City	Households (2010)	Participating HH (assume 50%)	Cost per Month	Cost per Year
Homer	2,235	1,118	\$5.53	\$74, 190
Kenai	2,809	1,405	\$5.53	\$93,240
Seward	928	464	\$5.53	\$30,790
Soldotna	1,720	860	\$5.53	\$57,070
Total				\$225,290

Table 7.2. Annual Cost for Residential SSO Collection

Total commercial collection costs are difficult to estimate as there are substantial variations in commercial prices charged by haulers depending on location, type of containers leased, type and weight of waste requiring collection, proximity to other generators, collection frequency, length of contracted service, collection fleet available, and the contract terms. Assuming the cost to KPB Solid Waste would be roughly equal to the monthly fee charged by Alaska Waste for weekly pickup of a 3 CY container (\$90/month), and assuming that 50% of the approximately 250 businesses in the "Accommodations and Food Service" economic category²⁸ participate, annual costs for commercial SSO diversion would be about \$135,000.

Alaska Waste estimated the cost of a 6 CY bear proof container with shipping at \$3,500. The cost for container rental and weekly pick up is 160/month. Alaska Waste could potentially pick up 25, 6 CY containers in one day in the Kenai/Soldotna area. The organic containers would be picked up once per week. An existing truck would be used to haul the source separated organic material (SSO), and would be washed out prior to hauling organics and afterwards. The truck available for use holds 30 CY and achieves between a 3: to 5:1 compaction ratio, making them capable of hauling 90 - 150 bulk CY of SSO²⁹. The compaction of SSO is not recommended as the fruit/vegetable/food releases its water and makes a run-off that can be dangerous on the road system. The use of a roll-off truck is recommended over a compaction truck.

²⁸ Kenai Peninsula Borough Economic Census, at

http://www2.borough.kenai.ak.us/Econ/1s_p%20data/Economic%20Census/AccommodateFood.htm

²⁹ Personal Communication, Mr. Dennis Smith, Local Alaska Waste Manager, February 8, 2013

Composting Facility Costs

Capital costs for a composting facility to recycle SSO vary widely, depending, in large part, on the need for, and extent of, higher levels of technological process and environmental controls. As noted in the Task 3 Technology Alternatives report, open-air windrow composting is the least expensive form of composting, but is considered unacceptable for implementation in KPB due to weather and wildlife concerns. The recommendation in that task report was for some form of enclosed or containerized composting system.

This type of system can be constructed by KPB using well-proven composting technologies, such as the aerated composting bins pictured in Figure 4.0. Alternatively, KPB can purchase an engineered system from one of several vendors (Engineered Compost Systems, Green Mountain Technologies, XAct Systems, among others). Vendor-supplied technologies can be more expensive than the generic approach. Both alternatives are presented in this report.

The project team developed preliminary capital and operating cost estimates for the three aerated compost bin configurations presented in Chapter 4 (one for the Seward area, one for the Homer area, and one for the Kenai/Sodotna area). This approach would have all processing steps enclosed in a building, with an induced-draft aerated static pile composting approach with air treatment by biofiltration. Operating cost estimates do not include costs for purchased wood chips, as no source of wood chips in KPB could be found. These estimates are summarized in Table 7.3 and detailed calculations are in the Appendix. Similarly, these three alternatives were costed out using Engineered Compost System's CV or SV composting system (see Task 3 report). Those estimates are presented in Table 7.4.

Facility	Capacity (tons/year)		Capital Cost Estimate (\$)	Equipment Cost Estimate	Operating Cost Estimate (\$/ton)
	SSO	Greenwaste			
Seward Area	600	500	\$1,853,000	\$223,400	\$31.06
Homer Area	1,400	1,000	\$3,025,000	\$303,000	\$24.14
Kenai/Soldotna Areas	8,500	5,000	\$12,125,000	\$426,000	\$16.02

Table 7.3: Preliminary Capital and Operating Costs for Generic ASP Systems

Table 7.4: Preliminary Capital and Operating Costs for ECS CV/SV Systems

Facility	Capacity (tons/year)		Capital Cost Estimate (\$)	Equipment Cost Estimate	Operating Cost Estimate (\$/ton)
	SSO	Greenwaste			
Seward Area	600	500	\$2,265,000	\$223,400	\$48.29
Homer Area	1,400	1,000	\$4,380,000	\$303,000	\$38.65
Kenai/Soldotna Areas	8,500	5,000	\$6,283,500	\$426,000	\$18.45

KPB Costs

The cost for the KPB solid waste management facilities in FY 2013 were estimated at \$2,358,517 for the Central Peninsula Landfill, \$616,467 for the Seward Transfer Facility, and \$1,396,509 for the Homer Baler. These department totals do not include Solid Waste Debt Service Payments or Solid Waste Capital Projects.³⁰

Historically capital projects for KPB Solid Waste are funded from the sale of bonds with the debt service being paid for by the general fund, but they have been successful in obtaining grants for capital construction. Tipping fees and other revenue help offset the operating transfer required from the general fund. Thus, it is currently undeterminable to define how the composting facility will be funded. The impact on tax payers is uncertain as the impact on taxes is figured from the mill rate equivalency, and each fiscal year the Borough determines what the mill rate equivalency for operating transfer from the general fund is for the solid waste department. For Fiscal Year 2013, the mill rate equivalency is 1.20.

Anaerobic Digestion Facility Costs

Previous tasks in this project have examined the potential to extract a renewable energy resource from the SSO prior to producing compost. Like composting, anaerobic digestion (AD) facilities can be generic or purchased from a vendor. The generic AD designs are traditionally liquid digesters, like those found on farms for livestock manure digestion. Solid waste digesters (also known as dry fermenters) are a late-20th century European technology and are only

³⁰ Personal communication, Mr. Jack Maryott, Solid Waste Director, KPB, February 5, 2013

available from project developers, who offer the technology in a design-build or design-buildoperate business model.

One dry fermentation AD project developer, Zero Waste Energy (Lafayette, CA) offers the Eggersmann KompoFerm and SmartFerm combination AD and composting systems. The SmartFerm system is sized in 5,000 ton/year increments. A 5,000 ton/year system has a capital cost of \$2,125,000 and estimated operating costs of \$15.00 per ton. Equipped with a combined heat-and-power generator to burn biogas, it would produce 650,000 kilowatt-hours/year of electricity.

Chapter 8 – Alternatives Evaluation

Introduction

This chapter focuses on taking the results of all previous tasks and developing a set of nine preliminary conceptual organics recycling alternatives. The alternatives are combinations of feedstocks, sites, technologies, and markets. These alternatives were evaluated using a weighted matrix criteria technique.

Methodology

The weighted criteria matrix is a decision-making tool that was used to evaluate alternatives based on specific evaluation criteria weighted by importance. By evaluating alternatives based on their performance with respect to individual criteria, a value for the alternative was identified. The values for each alternative were then compared to create a rank order of their performance related to the criteria as a whole. This tool is important because it treats the criteria independently, helping avoid the over-influence or emphasis on specific individual criteria. The evaluation criteria were developed by staff and the importance weighing factors assigned by Kenai Peninsula Borough personnel.

Alternatives

Alternatives were defined by the constraints of geography, weather, wildlife and existing solid waste infrastructure. Other constraints included:

- The availability of adequate amounts of carbon (woody material) to support the composting of food and/or seafood wastes. Golden Heart Utilities composting facility in Fairbanks faces this same challenge, but they are able to purchase spruce and birch wood chips from Northland Wood for \$24.50/yd³¹.
- The long hauling time from Seward and Homer to the Kenai/Soldotna area.
- The solid waste collection infrastructure is oriented toward drop-off programs at transfer stations or convenience centers more than curbside pickup of commercial and/or residential solid waste.
- The market for compost is currently limited and will need time and effort to stimulate.
- The market for recovered energy is potentially more robust given Homer Electric's net metering program.

³¹ Phone interview, Mr. Scott Creel, Composting Facility Foreman, Golden Heart Utilities, March 13, 2013

The list of alternatives is outlined in Table 8.1. The Alternatives were derived from Feedstock (Task 1), Market (Task 2), Technology (Task 3), Siting (Task-4), Cost (Task 5) and Permitting Requirements (Task 6).

Task 1 Feedstock Characterization

Feedstock Characterization was determined in Task 1. Potential feedstocks include food scraps, woody wastes, fish processing wastes and municipal sewage sludge.

Task 2 Market Characterization

A preliminary Market Characterization was defined in Task 2. The most likely primary sales market for compost in the Kenai Peninsula Borough was determined to be relatively small quantity use by individual consumers for residential and commercial landscaping and gardening. There also appears to be a potential market for biogas from anaerobic digestion, where the gas is used as a substitute for natural gas heat buildings or fuel a fleet of vehicles or burned in a generator to produce electricity, which can be fed into the local power grid.

Task 3 Technology Evaluation

Available and Applicable Technology were evaluated in Task 3. An enclosed Aerated Static Pile Technology, similar to the ECS CV system was recommended for this systems suitability for cold climate use, resistance to animal intrusion and scalability. Aerated static piles in the form or windrows were determined to be unsuitable for year round cold climate use.

Since preparation of the Task 3 draft report, a potential limited use of the Windrow or Passive Aerated Static Pile technology has appeared. It is estimated that the Kenai River salmon dip-net fishery generates up to 400,000 lbs. of fish waste (heads & guts) annually during the month of July. Currently the fish waste is discharged into the tidal zone at the mouth of the Kenai River. The concentrated discharge has resulted in an aesthetic and sanitation problem, noted by entities including the City of Kenai and the Alaska Department of Environmental Conservation. One means proposed to mitigate the fish waste problem is to collect the waste from the beach, haul it to an upland location with a ready source of deadwood timber that can be ground into chips, mixed with the fish waste and composted. Since the source of fish waste is seasonal and the composting process could occur during July and August, a Windrow or Passive Aerated Static Pile might be feasible.

Task 4 Siting Evaluation

Potential locations for an Organics Recycling/Composting facility were evaluated in Task 4. The Kenai Peninsula Borough GIS system was used to evaluate potential sites from a list of Borough-owned properties, across the full extent of the Borough.

<u> Task 5 – Cost Estimates</u>

Cost Estimates derived under Task 5 were used to determine relative capital costs, operational costs and hauling costs for various alternatives.

Task 6- Permitting Analysis

Permitting requirements for various types of facilities and for various locations (i.e. inside City Limits vs. outside) were studied in Task 6.

A rigid evaluation against these constraining and defining elements does not adequately differentiate between technologies that should be considered further. Therefore, additional evaluation criteria were selected for use in this project and the rationale for scoring against each criterion is presented below.

Each of these evaluation criteria was assigned a "weighting factor", a numerical value between 1 and 5, where 1 meant it was not an important criterion, 3 meant it was neither an important nor an unimportant criterion and 5 meant it was a very important criterion. The weighting factors used for each criterion were assigned by KPB staff and are shown in Table 8.2.

Given the constraints above, the potential alternative considerations include:

- Collection alternatives
 - A pick-up service by a private hauler paid for by a customer-paid service fee or paid for by KPB General Fund
 - A KPB –owned/operated pick-up service paid for by a customer-paid service fee or paid for by KPB General Fund
 - A drop-off system using dedicated appropriate collection containers at the Homer Transfer Station (TS), the Seward TS, the Kenai TS and/or the Central Landfill in Soldotna
- Processing alternatives
 - # 1 One facility, in Kenai/Soldotna area, using a combination of AD and in-vessel composting, sized for 10,000 tons/year of source-separated organics
 - # 2 Same as # 1 but only in-vessel composting
 - # 3 Smaller composting (only) systems serving Homer (1,500 tons/yr), Seward (600 tons/year) and Kenai/Soldotna (8,000 tons/year) using either invessel or aerated static bin composting
 - # 4 A demonstration-scale composting project (or projects) that could include one at Homer (170 tons/yr) and/or one in Kenai for seasonal fish waste (50 ton/yr), using aerated static bin composting (either active or passive)
- Technology alternatives
 - AD dry fermentation, i.e. Eggessmann's SmartFerm system
 - Composting in-vessel with ECS CV or SV system; aerated compost bins
- Siting Alternatives
 - Homer Homer TS

- Kenai Firewise Site
- Soldotna Central Peninsula Landfill
- Seward Seward TS
- Product alternatives
 - Recovered energy electricity production through CHP generator, electricity used behind-the-meter by KPB Solid Waste, excess sold back to Homer Electric
 - Compost landscaping/gardening market in KPB, possible use as alternative daily cover in CP landfill until market develops, export to Anchorage market

Alternatives that were evaluated are shown in Table 8.1.

Table 8.1: Alternatives

<u>Alt.</u>	<u>Where</u>	<u>Size</u>	Feedstock	<u>Collection</u>	Processing	<u>Technology</u>	<u>Market</u>
1	CPL	10,000 Ton/Yr	All	Private	AD+IVC	SmartFerm + ECS	Electricity +compost
2	CPL	10,000 Ton/Yr	All	Private	IVC only	ECS SV	Compost
3	CPL	10,000 Ton/Yr	All	КРВ	AD+IVC	SmartFerm + ECS	Electricity +compost
4	CPL	10,000 Ton/Yr	All	КРВ	IVC only	ECS SV	Compost
5	Homer TS	1,500 Ton/Yr	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
6	Seward TS	600 Ton/Yr	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
7	CPL	8,000 Ton/Yr	All	Drop-off	IVC only	ECS CV, aerated bin	Compost
8	Homer TS	Demo - 85 T/Y	Food only	Drop-off	IVC only	ECS CV, aerated bin	Compost
9	Kenai TS	Demo - 250 T/Y	Seasonal fish waste	Drop-off	IVC only	Aerated Static Pile	Compost

Evaluation Criteria

All alternatives can reliably produce a stable compost product from SSO, can be expanded to meet increased feedstock quantities, and are capable of cold weather operation. A rigid evaluation against these constraining and defining elements does not adequately differentiate between the alternatives that should be considered further. Therefore, additional evaluation

criteria were selected for use in this study. Rational for scoring against each criterion is presented in Table 8.2.

The evaluation criteria selected for use in this assessment of alternatives includes:

Feedstocks

- Flexibility to handle different feedstocks as noted above, the primary "capturable" feedstocks are food scraps, seafood wastes and sewage sludge, but as there are no composting/AD facilities in KPB, developing the first one may attract other compostable materials not evaluated in this project. An alternative with more flexibility to accept different material from different sources would score higher.
- Carbon/woody amendment demand as it is unclear if there is enough carbonaceous amendment (i.e. yard trimmings, vegetative clearing debris, agricultural residuals, etc.) available in KPB to support composting, those alternatives needing less amendment would score higher.

Collection and Transport

- Participation rate as the implementation of a source separated organics diversion program will be voluntary, those alternative that have greater influence over larger numbers of people would score higher.
- Contamination prevention improperly segregated organics have higher contamination rates with the presence of plastics and inert substances, which cost money to remove. Those alternatives with potentially higher segregation quality would score higher.
- Hauling distances those alternatives with shorter hauling distances would score higher.

Implementation Criteria

- Similar facilities in AK alternatives similar in scale and scope to other facilities in Alaska would score higher.
- Time to implement alternatives that could be implemented more quickly would score higher.
- Local permits and approvals alternatives that need fewer local permits and approvals would score higher.
- State permits and approvals alternatives that need fewer state permits and approvals would score higher.

Costs

- Capital costs alternatives that had less capital cost would score higher.
- Operating costs alternatives that had less operating cost would score higher.
- Maintainability alternatives that would be easier to maintain would score higher.

Markets

- Recovered energy alternatives that returned a financial benefit from the sale of recovered energy would score higher.
- Compost as the markets for compost sales in KPB are untested, alternatives producing smaller amounts of compost would score higher.

Aesthetic/Environmental

- Potential for odor episodes alternatives with less potential for odor episodes would score higher
- Proximity to sensitive receptors alternatives with farther distances to sensitive receptors would score higher.

Each of these evaluation criteria were assigned a "weighting factor", a numerical value between 1 and 5, where 1 meant it was not an important criterion, 3 meant it was neither an important nor an unimportant criterion and 5 meant it was an important criterion as presented in Table 8.2.

Criteria Class	Evaluation Criteria	Weight Factor
Feedstocks	Flexibility to handle difference feedstocks	4
	Carbon/woody amendment demand	5
Collection and	Participation rate	5
Transport	Contamination prevention	4
	Hauling distance	4
Implementation Criteria	Similar facilities in AK	3
	Time to Implement	3

Table 8.2: Weighted Matrix Evaluation Criteria

	Local permits & approvals	4
	State permits & approvals	4
	Capital costs	5
Costs	Operating costs	5
	Maintainability	4
Markets	Recovered energy	3
	Compost	5
Aesthetic/	Potential for odor episodes	5
Environmental	Proximity to sensitive receptors	5

Alternative Scoring

For each of the evaluation criteria, a raw (i.e. un-weighted) score was assigned. Scoring was from 1 to 5, where 1 meant the alternative was least favorable with respect to the evaluation criterion and 5 meant it was most favorable. Raw scores are presented in Table 8.3. Scores were based on best professional judgment.

KPB staff assigned values between 1 and 5 to reflect a weighting importance for each evaluation criterion. These weighting factors were multiplied by the raw scores to produce weighted scores. The weighted scores for each alternative were then summed across all evaluation criteria to produce a total weighted score for each alternative. Table 8.4 contains the weighted scores.

Table 8.3: Raw Alternatives Evaluation Score

		1	2	3	4	5	6	7	8	9
<u>Criteria Class</u>	Evaluation Criteria	CPL 10k, private, IVC + AD	CPL 10k, Private, IVC	CPL 10k, KPB, IVC + AD	CPL 10k, KPB, IVC	Homer 1.5k	Seward 600	CPL 8k	Homer Demo	Fire wise Demo
Feedstocks	Flexibility to handle different feedstocks	4	5	4	5	4	3	4	2	2
	Carbon/woody amendment demand	1	1	1	1	4	4	2	5	5
	Participation rate	4	4	5	5	3	3	3	3	3
Collection and Transport	Contamination prevention	4	4	5	5	3	3	3	3	3
	Hauling distance	3	3	3	3	5	5	4	5	5
Implementation Criteria	Similar facilities in AK	3	3	3	3	5	5	4	5	5
	Time to implement	3	4	3	4	5	5	4	5	5
	Local permits &	5	5	5	5	4	4	5	3	2

	approvals									
	State permits & approvals	3	3	3	3	4	4	4	5	5
Costs	Capital costs	1	1	1	1	4	4	3	5	5
	Operating costs	4	4	4	4	3	2	4	5	5
	Maintainability	2	2	2	2	4	4	3	5	5
Markets	Recovered Energy	5	2	5	2	2	2	2	2	2
	Compost	2	2	2	2	4	5	3	5	5
Aesthetic/	Potential for odor episodes	4	4	4	4	5	5	5	5	3
Environmental	Proximity to sensitive receptors	5	5	5	5	4	5	5	4	3

Table 8. 4: Weighted Alternatives Evaluation Score

			1	2	3	4	5	6	7	8	9
<u>Criteria Class</u>	Evaluation Criteria	<u>Weight</u> <u>Factor</u>	CPL 10k, private, IVC + AD	CPL 10k, Private, IVC	CPL 10k, KPB, IVC + AD	CPL 10k, KPB, IVC	Homer 1.5k	Seward 600	CPL 8k	Homer Demo	Fire wise Demo
Feedstocks	Flexibility to handle different feedstocks	4	16	20	16	20	16	12	16	8	8
	Carbon/woody amendment demand	5	5	5	5	5	20	20	10	25	25
	Participation rate	5	20	20	25	25	15	15	15	15	15
Collection and Transport	Contamination prevention	4	16	16	20	20	12	12	12	12	12
	Hauling distance	4	12	12	12	12	20	20	16	20	20
Implementation Criteria	Similar facilities in AK	3	9	9	9	9	15	15	12	15	15
	Time to implement	3	9	12	9	12	15	15	12	15	15
	Local permits &	4	20	20	20	20	16	16	20	12	8

	approvals										
	State permits & approvals	4	12	12	12	12	16	16	16	20	20
	Capital costs	5	5	5	5	5	20	20	15	25	25
Costs	Operating costs	5	20	20	20	20	15	10	20	25	25
	Maintainability	4	8	8	8	8	16	16	12	20	20
Markets	Recovered Energy	3	15	6	15	6	6	6	6	6	6
	Compost	3	10	10	10	10	20	25	15	25	25
Aesthetic/	Potential for odor episodes	5	20	20	20	20	25	25	25	25	15
Environmental	Proximity to sensitive receptors	5	25	25	25	25	20	25	25	20	15
Total:				222	220	231	229	267	268	247	288

Summary

The highest scoring alternatives were:

Alternative	Total Weighted Score
Alt. 8 – Homer Area Demo (170 TPY)	288
Alt. 9 – Kenai/FireWise Demo (250 TPY)	269
Alt. 6 – Seward Transfer Sta. (600 TPY)	268
Alt. 5 – Homer Transfer Station (1,500 TPY)	267

Alternative 8 had the highest score, and the next three highest scoring alternatives were similarly scored. A small-scale demonstration project in the Homer area could accomplish several objectives:

- Provide a mechanism for food scraps diversion from an area of KPB that has high interest in diversion
- Verify that sources of woody carbon material can be sourced for use in composting
- Confirm that enclosed aerated static pile composting technology (such as the ECS CV Composter or the GMT Earth Flow) will work satisfactorily in KPB winter conditions
- Verify that a market exists for the compost in the Homer area

Alternative 9 would also accomplish several objectives, at potentially minor additional cost:

- Solve a seasonal fish waste problem that has potential environmental and tourism impacts
- Confirm that low-technology windrow composting may be suitable for warm season usage
- Verify that a market exists for the compost in the Kenai and Soldotna areas

Chapter 9 – Recommendations

Introduction

The previous chapters of this report have detailed the work of this feasibility study. The evaluation of alternatives was conducted with regard to some of the issues, constraints, and opportunities identified during the course of this project and this chapter is focused on developing recommendations for future steps to be taken by KPB Solid Waste in the development of a SSO diversion strategy with its supporting organics recycling facility.

Due to uncertainties regarding adequate amounts of carbonaceous bulking agent amendment (woody wastes), the participation rate for a drop-off SSO diversion program, and the market demand for a compost product in the KPB, the alternatives analysis recommended that KPB develop two pilot programs, one for handling food scraps generated in the Homer area, and one for handling seasonal salmon run fish wastes in the Kenai area.

Homer Demonstration Project

The Homer area demonstration project would be based on a containerized aerated static pile technology, similar to the "CV Composter" sold by Engineered Compost Systems in Seattle, WA (ECS). The CV Composter resembles an ocean-going shipping container and operates as a batch system, where a 32-CY container is filled with SSO and carbon amendment and allowed to compost in the reactor for 25 days. After active composting, the material in the reactor would be cured/aged for another 60-90 days, and then screened to remove oversized particles from the finished compost.

The goals for the Homer pilot project would be:

- 1. Determine effectiveness/willingness of local population to separate organics and deliver them to the Compost Facility.
- 2. Determine effectiveness/willingness of local population to separate organics and deliver them one of several collection facilities, then cost to haul to Compost facility.
- 3. Determine actual availability of wood fiber delivered to the compost facility and then cost to grind up at the facility.
- 4. Determine effectiveness and cost to operate the CV Composter units(s).
- 5. Determine cost recovery, if any, resulting from selling finished compost.
- 6. Determine other associated costs for marketing, such as possible need to bag the compost vs. loading it into individuals' vehicles for self-delivery.

ECS provided an estimate for a full-scale (1,500 ton/year) composting facility in the Homer area and indicated it would require sixteen (16) CV Composter units to handle the volumes. Figure

4.2 is a photograph of the CV Composter system and Figure 9.1 is a schematic layout of the full-scale system.

The proposed demonstration would be based on KPB acquiring two (2) CV Composter units, setting them up at the Homer Transfer Station/Balefill site, and installing dedicated SSO collection units at the Homer Transfer Station, the Anchor Point Transfer Site, the McNeil Canyon Transfer Site, and possibly the Ninilchik Transfer Site. The collection units would be pulled by KPB weekly, delivered to the Homer demonstration site and unloaded. Proportional amounts of SSO and ground-up carbonaceous bulking agent (mostly yard trimmings and wood chips) would be mixed by a combination mixer/reactor loading conveyor³².

The composting recipe would combine SSO with a bulking agent at about a 3:1 ratio (on a volumetric basis), although that could be reduced if there is a lot of soiled paper in the diverted SSO. At a 3:1 ratio, the demonstration facility would need approximately 180 tons of woody material/yard trimmings per year (the recipe should be confirmed with laboratory analysis of representative samples during design). As noted in Chapter 1, the Homer Transfer Station receives approximately 400 tons of woody wastes per year, which could be used in this demonstration project.

Estimated capital costs for this demonstration project are shown in Table 9.1 and total about \$900,000 for site improvements and \$240,000 for equipment. Operating costs for the demonstration project are estimated at about \$52,000 per year, consisting of \$15,000 in labor costs, \$23,000 in machine costs (fuel, maintenance, etc.), and about \$14,000 per year in waste transport costs between the Homer site and the distant transfer sites. Detailed cost estimates are included in the Appendix.

³² While it is possible to mix feedstocks for composting with mobile front end loaders, in the case of the ECS CV Composter system, the vendor has recommended against manual loading of the reactors with mobile loaders.

Figure 9.1 ECS Layout at Homer Transfer Station

Kenai Demonstration Project

Significant quantities of fish waste are also generated as a by-product of the sockeye salmon dipnet fishery which is centered at the mouth of the Kenai River. The City of Kenai has been tasked with disposal of fish waste in order to minimize beach contamination. The City estimates that approximately 500,000 lb. (250 tons) of fish waste is generated in July, during the month-long dipnet season. Current practice is to use a front end loader to scrape fish offal off the beach and push it out below the low tideline. The City has expressed willingness to load the fish waste into containers to facilitate offsite composting by others.

The Kenai Borough 'FireWise site', consisting of 31.1 acres located on KPB parcel # 04301036, has been identified as a potential site for an Organics Recycling Facility (see Figure 9.1 for an aerial photograph of the site). The parcel is zoned for Recreation by the City of Kenai and the City will require a Conditional Use Permit (CUP) for an organics recycling facility to be located on the site. If a CUP can be issued for this site, it may be a suitable site for handling both the seasonal fish waste, along with organics collected after the summer fishing season ends.

Assumptions								
1. Assume site	requires 2' excavation & backfill							
2. Capacity is 1	70 ton/year food scraps + 210 to	ons/yr greenwaste						
3. ECS quote is	for 2 vessel CV Composter syste	m with mixer						
4. Assume site	work for expansion to 8 CV Com	poster units						
Site size					0.5		ас	
	Processing building footprint				0		SF	
	ECS system footprint				12,000		SF	
	Allowance for access roads, equ	uipment maint.			5,000		SF	
	Total area needed				17,000		SF	
Components			Quantity	Unit	Unit Co	st	Extende	ed Cost
1. Processin	g Building		Not needed	for demo	onstratio	n project		
2. Services			Assume exis	ting infra	structure	e can handle		
3. ECS Comp	oosting System, mixer & biofilter							
Per budget est	imate						\$	384,000
Shipping - Seat	tle to Homer	estimate					\$	2,000
Installation fee	- assume 50% of capital expense	e					\$	192,000
4. Sitework								
Clearing and G	rubbing		0.4	ас	\$	7,000	\$	2,732
Unclassified Ex	cavation		1259	су	\$	4.00	\$	5,037
Gravel pads for	r outdoor areas	12" thick, compacted	630	су	\$	22.00	\$	13,852
Concrete pads	for ECS containers		150	SF	\$	12.00	\$	1,800
Asphalt pad for	r rest of ECS system		16,850	SF	\$	6.00	\$	101,100
Sediment/eros	ion control		allowance				\$	10,000
					Subtot	al	\$	712,521
					Design	@ 12%	\$	71,252
					Contin	gency @ 25%	\$	178,130
					Subtot	al	\$	961,903
Equipment								
SSO Collection	Containers	6 CY each	4		\$	3,500	\$	14,000
Loader	Volvo L70 (used)		1		\$	79,500	\$	79,500
2nd bucket	3 CY bucket	for product only	1		\$	6,500	\$	6,500
Screen	Trom 406 (used)		1		\$	47,900	\$	47,900
Grinder	Bandit 2600 horiz (used)		1		\$	89,500	\$	89,500
					Subtot	al	\$	237,400

Table 9.1 Homer Demonstration Project Capital Costs

Figure 9.1 Kenai "FireWise" Site

A turned windrow composting operation on this site would require about 1,200 tons of woody carbonaceous bulking agents to balance the high nitrogen content of the fish wastes. The Central Peninsula Landfill reports receiving about 850 tons of woody wastes annually, so additional quantities would have to be located (no other sources of wood wastes could be identified during this project, however, Spenard Builders Supply has two large piles of sawdust on their site that might be available). A proposed recipe and sizing analysis is contained in the Appendix. As with the Homer demonstration project, the recipe should be confirmed with laboratory analysis of representative samples during design.

The composting facility would occupy about 9 acres of the available 31 acres, which would include a waste receipt area, area for the storage of enough ground woody material to handle the entire 250 tons of fish wastes, an active composting area, a curing area, and a product screening and storage area, with the storage area sized to hold one year's worth of compost (about 2,600 CY) and the screened-out overs (about 600 CY).

Capital cost estimates for this pilot project are shown in Table 9.2, which includes the same estimate for equipment as shown in Table 9.1 for the Homer project. In reality, that equipment could be shared between the two sites.

Table 9.2 Kenai Salmon Waste Composting Pilot Capital Cost Estimate

Assumptions								
1. Assume site	requires no grading							
2. Capacity is 2	50 ton/year fish wastes	+ 1,200 tons/yr greenwa	iste					
3. Assume oper	n-air turned windrow op	eration						
4. Assume all a	ctivities on graveled sur	face over geotextile fabr	ic					
Site size						31.1	ac	
	Composting area foot	print				385,506	SF	
Allowance for access roads, equipment maint. (@ 20%) 77,101							SF	
Total area needed 462,607						SF		
Components Quantity Unit Unit Cost						Ē	Extended Cost	
Geotextile Fabr	ic		462,607	SF	\$	0.50	\$	231,304
Gravel pads for	processing areas	12" thick, compacted	17,134	су	\$	22.00	\$	376,939
Sediment/erosi	on control		allowance				\$	10,000
						Subtotal	\$	618,243
						Design @ 12%	\$	74,189
					Con	tingency @ 25%	\$	154,561
Equipment								
Loader	Volvo L70 (used)		1		\$	79,500	\$	79,500
2nd bucket	3 CY bucket	for product only	1		\$	6,500		
Screen	Trom 406 (used)		1		\$	47,900	\$	47,900
Grinder	Bandit 2600 horiz (use	ed)	1		\$	89,500	\$	89,500
						Subtotal	\$	223,400

Operating expenses for the Kenai demo are difficult to project due to the seasonal nature of the feedstock, but most window composting systems operate in the \$15-\$20 per ton (incoming) range, which would suggest an annual operating cost of \$22,500 to \$30,000. In addition, there would likely be \$10,000 - \$15,000 in annual costs to KPB in support of the compost market development program to serve both demonstration sites.

An alternative demonstration project could be set up in partnership with a local non-profit organization, Matti's Ranch, where Blair Martin serves as the Executive Director. Mr. Martin has been working with City of Kenai officials to handle the fish wastes at his 20-acre farm in Kenai. KPB Solid Waste could investigate the possibility of a public-private partnership for this particular demonstration project before committing to improving the FireWise site.

Appendices

Process Design Calculations

Overview Siting Maps

Capital and Operating Cost Estimates

Recommendations

Process Design Calculations

- Central Peninsula Landfill (CPL) Facility Compost Recipe
- CPL Facility Process Flow Diagram
- CPL Facility Aerated Static Pile (ASP) System Sizing
- CPL Facility with Anaerobic Digestion Mass Balance
- CPL Facility Engineered Compost Systems (ECS) "SV Composter" System Sizing
- Homer Facility Compost Recipe
- Homer Facility Process Flow Diagram
- Homer Facility ASP System Sizing
- Homer Facility ECS "CV Composter" System Sizing
- Seward Facility Compost Recipe
- Seward Facility Process Flow Diagram
- Seward Facility ASP System Sizing
- Seward Facility ECS "CV Composter" System Sizing

COKER COMPOSTING AND CONSULTING					104 Chasewood C Vinton, VA 2417 (540) 890-108 Fax: (540) 890-108 cscoker@verizon.ne www.cokercompost.com
Project	KPB Organics F	easibility Stu	dy	Proj. No.	12-1125
Client	Nelson Enginee	ering		Date	12/2/2012
Analysis	Recipe - CPL C	omposting Fa	acility		
Assumptions:					
1. Estimated current total tonnag	e of food scraps 8	& seafood wast	te is	8,850 to	ons/yr
2. Assume facility is open 5 days	s/week				
Estimated daily tonnage of for	od scraps			34.0 to	ons/day
MIX RATIO CALCULATIONS - I	Daily				
			Compost		
INGREDIENTS	Food Scraps	Carbon	Recycle	Overs	TOTAL MIX TARGET
C (% AS IS)	43.7	49.2	13.2	50.1	
N (% AS IS)	2.2	0.9	1.0	1.0	
MOISTURE%	71.5	40.1	45	45	
UNITS IN MIX BY WGT (T)	34.0	20.0	6.0	4.7	64.7
UNITS IN MIX BY WGT (LB)	68,077	40,000	12,000	9,400	129,477
UNITS IN MIX BY VOL (CY)	56.9	76.6	13.3	18.8	165.6
DENSITY (LBS/CY)	1196	522.5	900	500	
POUNDS OF CARBON	29.750	19.664	1.584	4,709	55.707
POUNDS OF NITROGEN	1.498	372	120	93	2.083
C:N RATIO	19.86	52.86	13.20	50.61	26.75 20 TO 30
	48 675	16.040	5 400	4 220	74 345
	68 077	40,040	12 000	9,200	120 /77
	00,077	40,000	12,000	3,400	57 42 50 TO 65%
				L	01.42 00 10 00 //
VOLATILE SOLIDS (%)	87.4%	98.3%	44.2%	98.3%	
VOLATILE SOLIDS (LBS)	59,499	39,320	5,304	9,240	113,363
TOTAL MASS (LBS)	68,077	40,000	12,000	9,400	129,477
MIX VS (%)	·				87.6% > 90%
DENSITY (LBS/CY)	1196	522.5	900	500	
DENSITY (KG/M3)	709.6	310.0	533.9	296.6	
% AIR SPACE	36.14	72.10	51.94	73.30	
FEEDSTOCK VOLUME (CY)	56.9	76.6	13.3	18.8	109
AIR VOLUME (CY)	20.6	55.2	6.9	13.8	75.9
PREDICTED FREE AIR SPACE					69.8% 40-60%

					104 V Fax: <u>csc</u> www.coke	Chasewood Ct inton VA 24179 (540) 890-1086 (540) 890-1087 oker@verizon.net ercompost.com
Project	KPB Organics Feasibility St	udy			Proj. No.	12-1125
Client	Nelson Engineering				Date	12/2/2012
Analysis	FFD - CFE Composing Fac	Jiity				
Assumptions: 1. Facility is op 2. Facility will 3. Exhaust air	pen 5 days/week, 52 weeks/yea use aerated static pile compost to be treated with biofilter	ar ing with neg	gative aera	ation		
Waste Genera	ation Quantities					
	1. Daily quantities					
	Food Scraps &	& Seafood V	Vastes	3	4.0 tons/day	
	Screened Con	nnost (inocu	lant)	2	6.0 tons/day	
	Screen overs	(bulking age	ent)		4.7 tons/day	
	Т	otal Daily T	onnage	6	4.7 tons/day	
	Т	otal Annua	l Tonnage	20,19	8.4 tons/year	
	2. Daily Volumes (ground up	o)		_		
	Food Scraps &	seatood v	vastes	5		
	Screened Con	npost (inocu	ulant)	, 1	3.3 CY/day	
	Screen overs	(bulking age	ent)	1	8.8 CY/day	
	Т	otal Daily V	/olumes	16	5.6 CY/day	
	Т	otal Annua	l Volume	51,6	670 CY/year	
Commontine	Veteriale Flowe					
1 Residence f	imes for ASP compositing (wint	er condition	(s)			
1. Residence	Compositing (with		Curina		Total	
	ASP 30 d	lays	cumg	60 days	. oral	90 days
2. Daily Volum	es going to composting (assum Daily volumes	ne 10% volu of mixed fe	ime loss ir edstocks =	n grinding/mixi =	ing) 149	9.0 CY/day
3. Volume of n	naterial in Primary Composting		• • • • •			
	Residence Da	ys	Mixed fee			
4 Daily Volum	ASP 50	% volume s	4, [,] hrink in co	471 CT		
it Duily voluit	Daily volumes	of compost	ed feedsto	ocks =	104	1.3 CY/dav
5. Volume of n	naterial in Curing (Secondary C	composting)	:			· · · · · ,
	Residence Da	ys	Compost	ed Feedstock	s	
	Windrow 60		6,	260 CY		
6. Daily Volum	es going to screening (assume	10% volum	ne shrink ir	n curing):	0.	
7 Screening	Daily volumes	of cured lee	EUSIOCKS =	=	9.	5.9 C 1/uay
7. Ocreening	a. Assume approx. 80% fini	shed compo	ost capture	e rate and 20%	6 going to ove	rs
	b. Finished compost produc	ction (daily):			0 0	
	Daily volumes	of screened	d compost	=	7	5.1 CY/day
	Daily volumes	of overs (m	iulch) =		18	3.8 CY/day
Food Scraps	5					
(56.9 CY/Day						
	- \					
Carbon						
Amendment				404.0.00		
(70.0 CY/Dav		149.0 CY/dav		104.3 CY/	uavi	93.9 CY/dav

		104 Chasewood Vinton VA 241 (540) 890-10	Ct 79 86
CO	KER	Fax: (540) 890-10	87
COLUDOCTIN		<u>cscoker@verizon.</u>	net
COMPOSITING	G AND CONSULTING	www.cokercompost.co	Jm
Project	KPB Organics Feasibility Study	Proj. No. 12-1125	
Client	Nelson Engineering	Date 12/2/2012	
Analysis	PFD - CPL Composting Facility		

Assumptions: 1. Facility is open 5 days/week, 52 weeks/year 2. Facility will use aerated static pile composting in concrete block bins with negative aeration 3. Exhaust air to be treated with biofilter

Waste Generation Quantities
A Dethic success the second

1. Daily quant	Itles			
	Food Scraps & S	Seafood Wastes	34.0	tons/day
	Carbon		20.0	tons/day
	Screened Comp	oost (inoculant)	6.0	tons/day
	Screen overs (b	ulking agent)	4.7	tons/day
	То	tal Daily Tonnage	64.7	tons/day
	То	tal Annual Tonnage	20,198.4	tons/year
2. Daily Volum	nes (ground up)	-		-
	Food Scraps &	Seafood Wastes	56.9	CY/day
	Carbon		76.6	CY/day
	Screened Comp	oost (inoculant)	13.3	CY/day
	Screen overs (b	ulking agent)	18.8	CY/day
	Ťo	tal Daily Volumes	165.6	CY/day
	То	tal Annual Volume	51,670	CY/year
Composting Materials Flor	ws			
1. Residence times for ASP	composting (winter	conditions)		
	Composting	Curing		Total
ASP	30 da	ys 60 (days	90 days
Daily Volumes going to co	omposting (assume	10% volume loss in grind	ling/mixing)	
	Daily volumes o	f mixed feedstocks =		149.0 CY/day
Volume of material in Prin	nary Composting			
	Residence Days	s Mixed feedsto	ocks	
ASP	30	4,471 (CY	
Daily Volumes going to cu	uring (assume 30%)	volume shrink in compos	ting)	
	Daily volumes o	f composted feedstocks	=	104.3 CY/day
5. Volume of material in Cur	ing (Secondary Con	nposting):		
	Residence Days	s Composted F	eedstocks	
Windrow	60	6,260	CY	
6. Daily Volumes going to so	creening (assume 10	0% volume shrink in curir	ng):	
	Daily volumes o	f cured feedstocks =		93.9 CY/day
7. Screening				
a. Assume ap	prox. 80% finished of	compost capture rate and	I 20% going to	overs
b. Finished co	ompost production (daily):		
	Daily volumes o	f screened compost =		75.1 CY/day
	Daily volumes o	f overs (mulch) =		18.8 CY/day
Feedstocks Receipt/Storag	ge Sizing Calculati	ons		
 Feedstock Receipts 				
a. Assume daily delivery of	of feedstocks with 1	day storage capacity		
b. Assume 2 days storage	inventory of amend	dments inside bldg.		
 c. Assume all deliveries b 	y SSO collection or	dump truck		
	Tru	uck Unloading Area =	30	ft. W
			30	ft. L
Ground Amendments stor	rage			
a. Volumes - assume 2 da	ays storage			
		Daily	<u>Total</u>	
	Carbon	76.6 CY	153	CY
Screened Con	npost (inoculant)	13.3 CY	27	CY
Screen over	s (bulking agent)	18.8 CY	38	CY
			217	CY

 Assume amendments stored separately 		
c. Assume maximum amendment depth of	8 ft	
d. Footprint of carbon storage bin	516.7 SF	
Assume bin width of	16 ft	
Calculated bin length	32 ft	
Carbon Amendments Storage Bin =	16 ft. W	
	32 ft. L	
	8 ft. D	
e. Footprint of compost storage bin	90.0 SF	
Assume bin width of	8 ft	
Calculated bin length	11 ft	
Compost Amendments Storage Bin =	8 ft. W	
•••••p••••••••••••••••••••••••••••••••	13 ft 1	
	8 ft D	
f Epotprint of overs storage bin	126 9 SE	
Assume bin width of	8 ft	
Calculated bin length	16 ft	
Overs Amendments Storage Bin –	8 ft W	
Overs Amendments Otorage bin -	17 ft 1	
	9 ft D	
Foodstock Mixing	8 II. D	
1 Deily Mix Volumee		
	F6 0 CV/day	
a. 550	100 7 CV/day	
D. Amendments		
2. Deilu miving values geoded		
2. Daily mixing volume needed	165.6 C1/day	
3. Mixing		
a. Assume mixing with small horizontal grinder (Vermeer HG200)		
b. Assume 10% volume loss in mixing		
c. Daily volume going to composting	149 CY/day	
4. Footprint of grinder is 20' L x 7' W so area needed =	30 ft W	
	80 ft L	
Active Composting		
1. Composting residence time	35 days/cycle	
2. Total volume in composting during 1 cycle	5,796 CY/cycle	
3. Assume one ASP bin filled twice per week		
Bin volume	373 CY/bin	
Assume ASP bin height =	8 ft	
5. Footprint of each ASP =	1,258 SF	
6. Assume ASP bin width =	24 ft	
7. Calculated ASP bin length =	52 ft	
8. Number of ASP bins in each cycle:		
Total volume in cycle/ vol of each bin	16 bins/cycle	
9. Area of active composting	20,121 SF	
10. Assume 8 bins on each side of open floor in bldg.		
11. Dimensions		
Width: (8 x 24' W) + (9 x 2' W walls)	210 ft W	
Length: 52' L x 2 + 50' aisle	154 ft L	

Composting Aeration System	
1. Volume of each bin	373 CY
2. Assumed bulk density of compostables	1,100 lbs/CY
3. Wet tonnage in each bin	204.9 wet tons
4. Assumed pile moisture content	50 %
5. Dry tonnage in each bin	102.5 dry tons
6. Aeration rate	750 CFH / dry ton
7. Aeration needed for each bin	76,853 CFH
8. Fan Air Flow needed	1,281 CFM/bin
Maximum Air Flow @ 6" W.C.	1,500 CFM/bin
Condensate Removal	
1. Assume air stream is 100% saturated	
2. Volume of each bin	373 CY/bin
3. Assumed bulk density	800 lbs/CY
4. Weight of compostables in each bay	298,096 lbs
5. Assume moisture content =	50%
6. Weight of water in each bay's batch =	149,048 lbs
7. Assumed moisture content at completion	40%
Weight of water in each bay's batch at completion =	119,238 lbs
9. Water loss	29,810 lbs
10. Assume 30% evaporates out of pile when fan off	8,943 lbs
 Remaining moisture migrating out through aeration system 	20,867 lbs
12. Convert to gallons at 8.34 lbs/gal	2,502 gal
13. Daily production assuming a 28-day cycle	89 gal/day/bin
Biofilter System Does not include building air	
1. Assume gas retention time =	60 sec
2. Air flow to biofilter from all bins	24,000.0 CFM
3. Required biofilter volume	24,000 CF
4. Assumed biofilter depth =	4 ft
5. Assumed biofilter footprint =	6000 SF
6. Biofilter dimensions =	60 ft W
	100 ft L
Curing System	2 2 2/
1. Assumed volume loss in composting	30 %
2. Volume of each ASP bin going to curing	261 CY/bin
3. Number of ASP bins going to curing monthly	
4. I otal volume going to curing monthly	4,173 CY
5. Assumed curing residence time	
6. Total volume in curing per cycle	8,347 CY/Cycle
7. Assume cure pile turned with loader with 4 CY bucket	7 4
8. Assumed cure pile height	
9. Footprint of cure pile	32,194 SF/Cycle
10. Assume curing done in static pile in building	450 # 14
14. Alea Neeueu	
	220 II L
Screening System	10.9/
Assumed volume loss in curing Monthly volume to corooning	10 % 2 756 CV/month
2. Nontrity volume to screening	3,756 C f/monun
 A Monthly volume of corecored compact to store ac 	20%
4. Monthly volume of screened compositio storage	5,195 CT/month
	203 CY/month
a. Dimensions. DU L X O W	25 # \\/
ו. הוכם וזכלעלע	20 IL VV 75 4 I
	75 IL L

Product Storage

1. Assumed winter storage period	5 months
2. Volume going to storage in winter	15,963 CY
3. Assumed storage pile height	8 ft
4. Storage pile footprint	53,875 SF
5. Assume storage in building	
6. Area Needed	200 ft W
	270 ft L

Area Summary Process

,				
Process	<u>Width</u>	Length	<u>Area</u>	Area
	<u>(ft.)</u>	<u>(ft.)</u>	<u>(sq. ft.)</u>	(acres)
Inside Building				
Truck Unloading Area	30	30	900	0.02
Carbon Amendments Storage	16	32	517	0.01
Compost Inoculant Storage	8	13	106	0.00
Overs Storage	8	17	135	0.00
Mixing	30	80	2,400	0.06
Composting Area	210	154	32,340	0.74
Curing Area	150	220	33,000	0.76
Screening Area	25	75	1,875	0.04
Product Storage Area	200	270	54,000	1.24
Outside Debind Duilding	Г	Total	125,273	2.88
Biofilter	60	100	6,000	0.14
	٦	Total	6,000	0.14

104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087

cscoker@verizon.net

COMPOSTING	AND CONSULTING				www.col	kercompost.com
Project	KPB Organics F	easibility Study		F	Proj. No.	12-1125
Client	Nelson Enginee	ring		[Date	3/19/2013
Analysis	ASP Sizing - CF	PL Composting Facility	- ECS SV System			rev 3/25/2013
Assumptions	<u>s:</u>					
1. Facility is	open 5 days/weel	k, 52 weeks/year				
2. Facility wi	Il use ECS CV Sy	stem - 6 vessels				
3. Exhaust a	ir to be treated wi	th biofilter				
Wasto Gon	aration Quantitio	~				
Waste Gene	1. Daily quantitie	es				
	n Duny quantum	Food Scraps (SSO)		34.0 t	ons/dav	
		Carbon		20.0 t	ons/day	
		Screened Compost	(inoculant)	6.0 t	ons/day	
		Screen overs (bulki	na agent)	4.7 t	ons/day	
		Total I	Daily Tonnage	64 7 t	ons/day	
		Total /	Annual Tonnage	20.198.4 t	ons/vear	
	2. Dailv Volume	s (around up)		_0,.0011	erre, j e ar	
		Food Scraps		56.9 (CY/dav	
		Carbon		76.6 (CY/day	
		Screened Compost	(inoculant)	13.3 (CY/day	
		Screen overs (bulki	na agent)	18.8 (CY/day	
		Total [Daily Volumes	165.6 (CY/day	
		Total /	Annual Volume	51,670 (CY/year	
Composting	g Materials Flows	5				
1. Residence	e times for ASP co	omposting (winter con	ditions)	_		
		Composting	Curing	7	Fotal	
	ASP	21 days		days	9	0 days
2. Daily Volu	imes going to com	posting (assume 5%	volume loss in grindi	ing/mixing)		
		Daily volumes of mi	xed feedstocks =		157.	3 CY/day
3. Volume of	f material in Prima	iry Composting				
		Residence Days	Mixed feedst	OCKS		
	ASP	21	3,304	CY 		
4. Daily Volu	imes going to curi	ng (assume 20% volu	me shrink in compos	sting)	405	0.0)//1-
		Daily volumes of co	mposted feedstocks	=	125.	9 CY/day
5. Volume of	r material in Curing	g (Secondary Compos	sting):			
		Residence Days	Composted F	-eedstocks		
	Windrow	69	8,685	CY		
b. Daily Volu	imes going to scre	ening (assume 10%)	VOIUME SNITINK IN CUIT	ng):	440	
7.0	_	Daily volumes of cu	reu teeastocks =		113.	3 UY/day
7. Screening)	av 000/ finishester				
	a. Assume appr	UX. 80% TINISNED COM	post capture rate and	u ∠0% going to 0	vers	
	D. FINISNED CON	poils volumes of an	/).		00	6 CV/day
		Daily volumes of sc			90.	
		Daily volumes of OV	ers (muich) =		ZZ.	

Feedstocks Rece	ipt/Storage Sizing Calculati	ons	, , , , , , , , , , , , , , , , , , ,
 Feedstock Rece a. Assume daily b. Assume 2 day 	ipts delivery of feedstocks with 1 ys storage inventory of amene	day storage capacity dments inside bldg.	
c. Assume all de	eliveries by SSO collection or Tr	dump truck ruck Unloading Area =	30 ft. W 30 ft. L
2. Ground Amendr a. Volumes - ass	nents storage sume 2 days storage		
Scre	Carbon ened Compost (inoculant)	<u>Daily</u> 76.6 CY 13.3 CY	<u>Total</u> 153 CY 27 CY
Sci	reen overs (bulking agent)	18.8 CY	38 CY 217 CY
b. Assume amer c. Assume maxi d. Footprint of ca Assu Calc	ndments stored separately mum amendment depth of arbon storage bin ume bin width of sulated bin length Carbon Amendu	ments Storage Bin =	6 ft 689.0 SF 8 ft 86 ft 16 ft. W
e. Footprint of co Assu	ompost storage bin ume bin width of		86 ft. L 6 ft. D 120.0 SF 8 ft
Calc	ulated bin length Compost Amen	dments Storage Bin =	15 ft 8 ft. W 17 ft. L 6 ft D
f. Footprint of ov Assu Calc	rers storage bin ume bin width of ulated bin length Overs Amendm	ents Storage Bin =	169.2 SF 8 ft 21 ft 8 ft. W 22 ft. L
Feedstock Mixing Included in ECS fo	l otprint		6 II. D
Active Compostin Included in ECS fo 11. Dimensions	ng otprint		
Widt Leng	h: gth:		166 ft W 143 ft L
Composting Aera Included in ECS fo	tion System otprint		
Condensate Rem Included in ECS fo	oval otprint		
Biofilter System			

Included in ECS footprint

Curing System						
1. Assumed volume loss in composition	sting				20	%
2. Volume of each ECS SV reactor	going to cu	iring			450	CY/bin
3. Number of ECS SVs going to cu		2	reactors			
4. Total volume going to curing mo	nthly				1,035	CY
5. Assumed curing residence time	-				2	months
6. Total volume in curing per cycle					2,070	CY/cycle
7. Assume cure pile turned with loa	ader with 4 (CY bucket	inside b	ldg.		-
8. Assumed cure pile height				-	7	ft
9. Footprint of cure pile					7,984	SF/cycle
10. Assume curing done in static p	ile in buildin	g				-
11. Allow extra 50% space for equi	p, screening	g, storage			3,992	SF
12. Total building area needed	•				11,976	SF
13. Area Needed					100	ft W
					120	ft L
Screening System						
1. Assumed volume loss in curing					10	%
2. Monthly volume to screening					932	CY/month
3. Assumed percentage of "overs"					20%	• • • • • • • • • • • • • • • • • • • •
4 Monthly volume of screened cor	npost to sto	rage			792	CY/month
5 Monthly volume of overs to store	npeer te ete	lago			140	CY/month
6 Assume use of a Wildcat 616 tro	mmel				110	e i/monar
a Dimensions: 50' L x 8' W						
7 Area Needed - included in curing	a building				50	ft \//
	g building				35	ft I
					1750	SE
Product Storage					1750	0
1 Assumed winter storage period					5	monthe
2. Volume going to storage in wint	.r				2 050	
2. Volume going to storage in white	51				3,959	61 #
Assumed storage pile height Storage pile featprint					10.001	IL OF
4. Storage pile lootprint					13,301	35
5. Assume storage in building	ha still all an an				400	£1. \ \ \
6. Area Needed - Include In curing	building				100	
					140	πL
Area Summary	\A/-1/1	1	•		A	
Process	<u>Vvidth</u>	Length	<u>A</u>	<u>irea</u>	Area	
	<u>(ft.)</u>	<u>(ft.)</u>	<u>(se</u>	<u>q. ft.)</u>	<u>(acres)</u>	
Inside Building			_			
Truck Unloading Area	30	3	0	900	0.02	
Carbon Amendments Storage	16	8	6	1,378	0.03	
Compost Inoculant Storage	8	1	7	136	0.00	
Overs Storage	8	2	2	177	0.00	
Curing Area	100	12	0	11,976	0.27	
Screening Area	50	3	5	1,750	0.04	

100

166

Subtotal

Total

140

143

Product Storage Area

Outside Behind Building ECS CV Compost System 14,000

30,318

23,738

54,056

0.32

0.70

0.54

1.24

COKER COMPOSTING AND CONSULTING					104 Chasewood Ct Vinton, VA 2417 (540) 890-108 Fax: (540) 890-108 cscoker@verizon.ne www.cokercompost.con
Project	KPB Organics F	easibility Stu	dy P	roj. No.	12-1125
Client	Nelson Enginee	ring	D	ate	12/2/2012
Analysis	Recipe - Homer	Composting	Facility		
Assumptions:					
1. Estimated current total tonnage	ge of food scraps is	5		1,500 to	ons/yr
Assume facility is open 5 day	s/week				
Estimated daily tonnage of fo	od scraps			5.8 tc	ons/day
MIX RATIO CALCULATIONS -	Daily				
		. .	Compost		
INGREDIENTS	Food Scraps	Carbon	Recycle	Overs	TOTAL MIX TARGET
C (% AS IS)	43.7	49.2	13.2	50.1	
N (% AS IS)	2.2	0.9	1.0	1.0	
MOISTURE%	71.5	40.1	45	45	
UNITS IN MIX BY WGT (T)	5.8	4.0	1.0	0.9	11.6
UNITS IN MIX BY WGT (LB)	11,538	8,000	2,000	1,720	23,258
UNITS IN MIX BY VOL (CY)	9.6	15.3	2.2	3.4	30.6
DENSITY (LBS/CY)	1196	522.5	900	500	
POUNDS OF CARBON	5.042	3,933	264	862	10.101
POUNDS OF NITROGEN	254	74	20	17	365
C:N RATIO	19.86	52.86	13.20	50.61	27.65 20 TO 30
	8 250	3 208	000	774	12 122
	11 538	3,200 8,000	2 000	1 720	23 258
PERCENT MOISTURE	11,000	0,000	2,000	1,720	56.46 50 TO 65%
	97 /%	08 3%	11 20/	08 3%	
	10.095	7 964	44.270	1 601	20 522
TOTAL MASS (LBS)	10,000	7,004	2 000	1,091	20,525
MIX VS (%)	11,000	0,000	2,000	1,720	<u>88.2%</u> > 90%
	1106	500 F	000	500	
DENSITY (LOS/CT)	700.6	210.0	500	206.6	
UENSITY (NG/IVIS)	709.6	310.0	533.9	296.6	
	30.14	12.10	51.94	13.30	24
	9.0	15.3	2.2	3.4 0.5	
	3.5 -	11.0	1.2	2.5	14./
REDICTED FREE AIR SPACE					/U.2% 40-60%

							10 Fax <u>s</u> www.col	4 Cha Vinto (54 : (54 <u>scoker</u> kerco	asewood Ct on VA 24179 0) 890-1086 0) 890-1087 @verizon.net mpost.com
Project	KPB Organio	s Feasibility Stud	dy				Proj. No		12-1125
Client	Nelson Engi	neering					Date		12/2/2012
Analysis	PFD - Home	r Composting Fa	cility						
Assumptions: 1. Facility is oper 2. Facility will use 3. Exhaust air to	n 5 days/weeł e aerated stat be treated wi	s, 52 weeks/year ic pile composting th biofilter	g with nega	ative aerat	tion				
Waste Generation	on Quantities	6							
	1. Daily quar	ntities							
		Food Scraps (S	SO)			5.8	tons/day		
		Carbon		0		4.0	tons/day		
		Screened Comp	oost (inocui	ant)		1.0	tons/day		
		Screen overs (b	tal Daily T	nn) Dannago		11.6	tons/day		
		To	nai Daily To tal Annual	Tonnade		3 628 3	tons/vea	r	
	2 Daily Volu	mes (around up)		ronnage		0,020.0	tons/yea		
	2. Dully Volu	Food Scraps				9.6	CY/dav		
		Carbon				15.3	CY/dav		
		Screened Comp	oost (inocul	ant)		2.2	CY/day		
		Screen overs (b	ulking age	nt)		3.4	CY/day		
		Ťc	tal Daily V	olumes		30.6	CY/day		
		To	otal Annual	Volume		9,554	CY/year		
Composting Ma	terials Flows	;		`					
1. Residence tim	es for ASP co	Composting (winter	conditions	6) Curina			Total		
		Composing 45 do		Curing	20. dava		Total	75	dovo
2 Daily Volumes	AOF	40 Ud nostina (assume	uys 10% volur	na loss in	arinding/r	nivina)		75 0	uays
2. Daily volumes	going to con	Daily volumes o	f mixed fee	ne ioss in detocke -	giniang/i	nixing)		2760	CY/day
3. Volume of mat	terial in Prima	ry Composting			-				orrady
		Residence Davs	S	Mixed fee	edstocks				
	ASP	45		1,2	240 CY				
4. Daily Volumes	going to curi	ng (assume 30%	volume sh	rink in cor	nposting)				0)// 1
	torial in Curin	Daily volumes o	mposting):	a ieeasio	CKS =			19.3	C f/day
5. Volume of mat		Posidonco Dove	nposung).	Compost	od Fooder	ocks			
	Windrow	Residence Days	3	Composit	579 CV	005			
6 Daily Volumes	aging to scre	ening (assume 1	0% volume	shrink in	curing).				
c. Daily volatios	geing to bore	Daily volumes o	of cured fee	dstocks =	canny/.			17.4 (CY/dav
7. Screening		,							
5	a. Assume a	pprox. 80% finish	ned compo	st capture	rate and	20% go	ing to ove	ers	
	b. Finished	compost producti	ion (daily):	·		5	2		
		Daily volumes o	f screened	compost	=			13.9 (CY/day
		Daily volumes o	of overs (mu	ulch) =				3.5 (CY/day

co	KER	Ř		1 Fa	04 Chasewood Ct Vinton VA 24179 (540) 890-1086 x: (540) 890-1087 cscoker@verizon.net
COMPOSTINO	3 AND CONSULTIN	JG		www.co	okercompost.com
Project	KPB Organics	Feasibility Study		Proi No	12-1125
Cliont	Nelson Engine	oring		Data	12/2/2012
Δnalvsis	ASP Sizing - H	lomer Composting Facili	tv	Date	12/2/2012
Analysis	All Olzing T	onier composing r dom	ty		
Assumption: 1. Facility is 2. Facility wi 3. Exhaust a	<u>s:</u> open 5 days/wee ill use aerated sta air to be treated w	ek, 52 weeks/year atic pile composting in co vith biofilter	oncrete block bins with	n negative aeration	
Waste Gen	eration Quantitie 1. Daily quantit	es			
		Food Scraps (SSO)		5.8 tons/day	
		Carbon		4.0 tons/day	
		Screened Compost (inoculant)	1.0 tons/day	
		Screen overs (bulkin	g agent)	0.9 tons/day	
		Total D	aily Tonnage	11.6 tons/day	
		I otal A	nnual Ionnage	3,628.3 tons/year	
	2. Daily volum	es (ground up)			
		Food Scraps		9.6 CY/day	
		Screened Compost (inoculant)	2.2 CV/day	
		Screen overs (bulkin	a agent)	3.4 CY/day	
		Total D	aily Volumes	30.6 CY/day	
		Total A	nnual Volume	9.554 CY/vear	
Compostin 1. Residenc	g Materials Flow e times for ASP of ASP	/s composting (winter cond Composting 35 days	itions) Curing 60 da	Total	95 days
2. Daily Volu	umes going to cor	mposting (assume 10%	volume loss in grindin	g/mixing)	· ·) -
3. Volume o	f material in Prim	Daily volumes of mix ary Composting	ed feedstocks =	27	7.6 CY/day
	ASP	Residence Days	Mixed feedstoc	ks Y	
4. Daily Volu	umes going to cur	ring (assume 30% volum	ne shrink in compostin	g)	
•		Daily volumes of con	nposted feedstocks =	19	0.3 CY/day
5. Volume o	f material in Curir	ng (Secondary Compost	ing):		
		Residence Days	Composted Fee	edstocks	
	Windrow	60	1,157 C	Y	
3. Daily Volu	umes going to scr	eening (assume 10% vo Daily volumes of cure	olume shrink in curing) ed feedstocks =): 17	.4 CY/day
7. Screening	9				
	a. Assume app	prox. 80% finished comp	ost capture rate and 2	0% going to overs	
	b. Timoned co	Daily volumes of scre	ened compost =	13	9 CY/day
		Daily volumes of ove	rs (mulch) =	3	B.5 CY/day
Feedstocks	Receipt/Storag k Receipts	e Sizing Calculations			
a. Assum b. Assum	e daily delivery of e 2 days storage	f feedstocks with 1 day s inventory of amendmen	storage capacity ts inside bldg.		
c. Assum	e all deliveries by	SSO collection or dump	o truck		
	,	Truck L	Jnloading Area =	30 ft. W 30 ft. L	

2. Ground Amendments storage a. Volumes - assume 2 days storage

a. volumes	- assume z days storage		
		<u>Daily</u>	<u>Total</u>
	Carbon	15.3 CY	31 CY
	Screened Compost (inoculant)	22 CY	4 CY
	Screen evers (bulking egent)	24 CV	7 CV
	Screen overs (buiking agent)	3.4 01	
			42 CY
b. Assume	amendments stored separately		
c. Assume	maximum amendment depth of		6 ft
d Footprin	of carbon storage bin		137.8 SF
a. r ootprin	Accume hin width of		0 4
			8 11
	Calculated bin length		17 ft
	Carbon Amendr	nents Storage Bin =	8 ft. W
			17 ft. L
			6 ft. D
e Footorin	of compost storage bin		20.0 SE
e. i ootpiin			20.0 01
	Assume bin width of		4 11
	Calculated bin length		5 ft
	Compost Ameno	dments Storage Bin =	4 ft. W
			7 ft. L
			6 ft. D
f Ecotorint	of overs storage bin		31 0 SE
1. I 00tprim			31.0 31
	Assume bin width of		4 ft
	Calculated bin length		8 ft
	Overs Amendme	ents Storage Bin =	4 ft. W
			9 ft. L
			6 ft D
Feedstock M	iving		0 111 2
1 Doily Mix V	iking Iolumoo		
	olumes		
a. SSO			9.6 CY/day
b. Amendr	ients		21.0 CY/day
		Total	30.6 CY/day
2. Daily mixin	a volume needed		30.6 CY/day
3 Mixing	5		
	mixing with small borizontal grinde	r (Vermeer HG200)	
	400(us has a lass is mining	(Venneer HG200)	
b. Assume	10% volume loss in mixing		
c. Daily vol	ume going to composting		28 CY/day
4. Footprint o	f grinder is 20' L x 7' W so area nee	eded =	30 ft W
	-		80 ft L
Active Com	ostina		
1 Composition	a regidence time		25 days/avala
1. Composiin			35 days/cycle
2. Total volun	ie in composting during 1 cycle		1,072 CY/cycle
3. Assume or	e ASP bin filled every 5 days		
	Bin volume		138 CY/bin
4 Assume AS	SP bin height =		6 ft
5 Ecotorint o	each ASP -		620 SE
			10.4
o. Assume As			πσι
7. Calculated	ASP bin length =		34 ft
8. Number of	ASP bins in each cycle:		
	Total volume in cycle/ vol of each	bin	8 bins/cycle
9. Area of act	ive composting		4.961 SF
	hine on each side of onon floor in	blda	1,001 01
10. Assume 4		biug.	
II. Dimensio	18		
	Width: (4 x 18' W) + (5 x 2' W wall	s)	82 ft W
	Width: (4 x 18' W) + (5 x 2' W wall: Length: 34' L x 2 + 50' aisle	5)	82 ft W 118 ft L

Composting Aeration System	
1. Volume of each bin	138 CY
2. Assumed bulk density of compostables	1,100 lbs/CY
3. Wet tonnage in each bin	75.8 wet tons
4. Assumed pile moisture content	37.9 dry tons
6 Aeration rate	750 CEH / dry ton
7. Aeration needed for each bin	28.420 CFH
8. Fan Air Flow needed	474 CFM/bin
Maximum Air Flow @ 6" W.C.	500 CFM/bin
Condensate Removal	
1 Assume air stream is 100% saturated	
2. Volume of each bin	138 CY/bin
3. Assumed bulk density	800 lbs/CY
4. Weight of compostables in each bay	110,235 lbs
5. Assume moisture content =	50%
Weight of water in each bay's batch =	55,117 lbs
7. Assumed moisture content at completion	40%
8. Weight of water in each bay's batch at completion =	44,094 lbs
9. Water loss	11,023 IDS
10. Assume 30% evaporates out of pile when fan off	3,307 IDS 7,716 lbs
12. Convert to gallons at 8.34 lbs/gal	925 gal
13. Daily production assuming a 28-day cycle	33 gal/dav/bin
	ee gawaay, an
Biofilter System Does not include building air	
1. Assume gas retention time =	60 sec
2. Air flow to biofilter from all bins	4,000.0 CFM
3. Required biofilter volume	4,000 CF
4. Assumed biofilter footprint –	4 II 1000 SE
6 Biofilter dimensions –	20 ft W
	50 ft l
Curing System	
1. Assumed volume loss in composting	30 %
2. Volume of each ASP bin going to curing	96 CY/bin
3. Number of ASP bins going to curing monthly	
5 Assumed curing residence time	2 months
6. Total volume in curing per cycle	1.543 CY/cvcle
7. Assume cure pile turned with loader with 4 CY bucket	·,• · • • • • • • • • • • • • • • • • •
8. Assumed cure pile height	7 ft
9. Footprint of cure pile	5,953 SF/cycle
10. Assume curing done in static pile in building	
14. Area Needed	60 ft W
	100 ft L
Screening System	
1. Assumed volume loss in curing	10 %
2. Monthly volume to screening	694 CY/month
3. Assumed percentage of "overs"	20%
Monthly volume of screened compost to storage	590 CY/month
5. Monthly volume of overs to storage	104 CY/month
6. Assume use of a TROM 406 trommel	
a. Dimensions: 25 L X 8 W	25 ft W
7. Alea Needed	25 ft l
	00 11 2
Product Storage	-
Assumed winter storage period Volume geing to storage in winter	5 months
 volume going to storage in winter Assumed storage pile beight 	2,902 UY
4. Storage pile footprint	9.961 SF
5. Assume storage in building	0,001 01
6. Area Needed	100 ft W/

Area Summary				
Process	Width	Length	Area	Area
	<u>(ft.)</u>	<u>(ft.)</u>	<u>(sq. ft.)</u>	(acres)
Inside Building				
Truck Unloading Area	30	30	900	0.02
Carbon Amendments Storage	8	17	138	0.00
Compost Inoculant Storage	4	7	28	0.00
Overs Storage	4	9	35	0.00
Mixing	30	80	2,400	0.06
Composting Area	82	118	9,676	0.22
Curing Area	60	100	6,000	0.14
Screening Area	25	35	875	0.02
Product Storage Area	100	100	10,000	0.23
	-	Fotal	30,052	0.69
Outside Behind Building				
Biofilter	20	50	1,000	0.02
	-	Total	1,000	0.02

104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087

cscoker@verizon.net

COMPOSTING	, and consulting				www.col	kercompost.com
Project	KPB Organics Feasibility Study				Proj. No.	12-1125
Client	Nelson Enginee	eering			Date	3/19/2013
Analysis	ASP Sizing - Ho	omer Composting Faci	litv - ECS CV Svstem	1		
7) 0.0	, e. eg	g i don poeting i don				
Assumptions 1. Facility is 2. Facility wi 3. Exhaust a	<u>s:</u> open 5 days/wee Il use ECS CV Sy ir to be treated wi	k, 52 weeks/year stem - 14 vessels th biofilter				
Waste Gene	eration Quantitie 1. Daily quantiti	s es				
		Food Scraps (SSO)		5.8 t	ons/day	
		Carbon		4.0 t	ons/day	
		Screened Compost	(inoculant)	1.0 t	ons/day	
		Screen overs (bulkir	ng agent)	0.9 t	ons/day	
		Total D	Daily Tonnage	11.6 t	ons/day	
		Total A	Annual Tonnage	3,628.3 t	ons/year	
	2. Daily Volume	es (ground up)				
		Food Scraps		9.6 (CY/day	
		Carbon		15.3 (CY/day	
		Screened Compost	(inoculant)	2.2 (CY/day	
		Screen overs (bulkir	ng agent)	3.4 (CY/day	
		I otal L	Daily Volumes	30.6 (CY/day	
		I otal Annual Volume 9,55			CY/year	
Compostin	a Matoriale Elow	-				
1 Residence	a times for ASP of	o monosting (winter cond	ditions)			
1. ITESIGEIIC		Compositing (wither cond	Curing	-	Total	
	ASP	21 days	69 c	tavs	q Q	0 davs
2 Daily Volu	imes going to con	nposting (assume 5%)	volume loss in arindir	a/mixina)	0	o dayo
		Daily volumes of mix	ked feedstocks =	.9,	29.	1 CY/day
3. Volume o	f material in Prima	ary Composting				, <u> </u>
		Residence Days	Mixed feedsto	cks		
	ASP	21	611 (CY		
4. Daily Volu	imes going to curi	ng (assume 20% volui	me shrink in compost	ing)		
-		Daily volumes of cor	mposted feedstocks =	=	23.	3 CY/day
5. Volume o	f material in Curin	g (Secondary Compos	ting):			
		Residence Days	Composted Fe	eedstocks		
	Windrow	69	1,606 (CY		
Daily Volumes going to screening (assume 10% volume shrink in curing):						
_		Daily volumes of cu	red feedstocks =		20.	9 CY/day
7. Screening)					
	a. Assume appr	ox. 80% finished comp	post capture rate and	20% going to o	vers	
b. Finished compost production (daily):						
		Daily volumes of scr	eened compost =		16.	8 CY/day
	Daily volumes of overs (mulch) =				4.	2 CY/day

		Organics Recycling reasibility	/ Sludy	
Feedstocks Receipt/Storage 1. Feedstock Receipts	e Sizing Calcula	tions		
 a. Assume daily delivery of b. Assume 2 days storage c. Assume all deliveries by 	feedstocks with nventory of ame SSO collection o	1 day storage capacity ndments inside bldg. r dump truck		
	T	Fruck Unloading Area =	30 ft. W 30 ft. L	
2. Ground Amendments stora a. Volumes - assume 2 day	ge /s storage			
	e eterage	Daily	Total	
	Carbon	15.3 CY	31 CY	
Screened Com	post (inoculant)	2.2 CY	4 CY	
Screen overs	(bulking agent)	3.4 CY	7 CY	
	(*****)		42 CY	
b. Assume amendments st	ored separately		• •	
c. Assume maximum amer	dment depth of		6 ft	
d Footprint of carbon stora	ae bin		137.8 SF	
Assume bin wic	Ith of		8 ft	
Calculated bin	enath		17 ft	
	Carbon Amen	dments Storage Bin –	8 ft W	
	Carbon Americ		17 ft 1	
			6 ft D	
e Ecotorint of compost sto	rade hin		20.0 SE	
	lage bill		20.0 31	
Coloulated bin	anath		4 IL 5 ft	
Calculated birt		ndmanta Staraga Din		
	Compost Ame	ndments Storage Bin =	4 ft. VV	
			7 π. L	
			6 ft. D	
f. Footprint of overs storage			31.0 SF	
Assume bin wid	Ith of		4 ft	
Calculated bin length				
	Overs Amendr	ments Storage Bin =	4 ft. W	
			9 ft. L	
			6 ft. D	
Feedstock Mixing Included in ECS footprint				
Active Composting				
Included in ECS footprint				
11. Dimensions				
Width:			165 ft W	
Length:			109 ft L	
Composting Aeration Syste Included in ECS footprint	m			
Condensate Removal				
Included in ECS footprint				
Biofilter System				

Curing System					
1. Assumed volume loss in composition		20	%		
2. Volume of each ECS CV going t	o curing			36	CY/bin
3. Number of ECS CVs going to cu	iring month	ly		16	bins
4. Total volume going to curing mo	nthly			576	CY
5. Assumed curing residence time				2.3	months
6. Total volume in curing per cycle				1,325	CY/cycle
7. Assume cure pile turned with loa	ader with 4	CY bucket ins	ide bldg.		
8. Assumed cure pile height				7	ft
9. Footprint of cure pile				5,110	SF/cycle
10. Assume curing done in static p	ile in buildir	ng			
11. Allow extra 50% space for equi	p, screenin	g, storage		2,555	SF
12. Total building area needed				7,665	SF
13. Area Needed				60	ft W
				128	ft L
Screening System					
1. Assumed volume loss in curing				10	%
2. Monthly volume to screening				518	CY/month
3. Assumed percentage of "overs"				20%	
4. Monthly volume of screened cor	npost to sto	orage		441	CY/month
5. Monthly volume of overs to stora	age	-		78	CY/month
6. Assume use of a TROM 406 trop	mmel				
a. Dimensions: 25' L x 8' W					
7. Area Needed - included in curing	g building			25	ft W
				35	ft L
				875	SF
Product Storage					
1. Assumed winter storage period				5	months
2. Volume going to storage in winte	er			2,203	CY
3. Assumed storage pile height				8	ft
4. Storage pile footprint				7,436	SF
5. Assume storage in building					
6. Area Needed - include in curing	building			60	ft W
				130	ft L
Area Summary					
Process	<u>Width</u>	Length	<u>Area</u>	<u>Area</u>	
	<u>(ft.)</u>	<u>(ft.)</u>	<u>(sq. ft.)</u>	<u>(acres)</u>	
Inside Building					
Truck Unloading Area	30	30	900	0.02	
Carbon Amendments Storage	8	17	138	0.00	
Compost Inoculant Storage	4	7	28	0.00	
Overs Storage	4	9	35	0.00	
Curing Area	0.18				
Screening Area	0.02				
Product Storage Area	0.18				
	;	Subtotal	17,441	0.40	

165

Total

Outside Behind Building ECS CV Compost System

17,985

35,426

0.41

0.81

109

COKER COMPOSTING AND CONSULTING					104 Chasewood Ct. Vinton, VA 24179 (540) 890-1086 Fax: (540) 890-1087 cscoker@verizon.net www.cokercompost.com
Project	KPB Organics F	easibility Stu	dy	Proj. No.	12-1125
Client	Nelson Enginee	ring		Date	12/2/2012
Analysis	Recipe - Seward	d Composting	g Facility		
<u>Assumptions:</u> 1. Estimated current total tonna 2. Assume facility is open 5 day 3. Estimated daily tonnage of fo	age of food scraps is ys/week pod scraps	5		600 t 2.3 t	:ons/yr tons/day
MIX RATIO CALCULATIONS -	Daily				
INGREDIENTS	Food Scraps	Carbon	Compost Recycle	Overs	TOTAL MIX TARGET
C (% AS IS)	43.7	49.2	13.2	50.1	
N (% AS IS)	2.2	0.9	1.0	1.0	
MOISTURE%	71.5	40.1	45	45	
UNITS IN MIX BY WGT (T)	2.3	2.0	0.5	0.4	5.2
	4,615	4,000	1,000	800	10,415
UNITS IN MIX BY VOL (CY)	3.9	1.1	1.1	1.6	14.2
DENSITY (LBS/CY)	1196	522.5	900	500	
POUNDS OF CARBON	2,017	1,966	132	401	4,516
POUNDS OF NITROGEN	102	37	10	8	157
C:N RATIO	19.86	52.86	13.20	50.61	28.83 20 TO 30
POUNDS OF MOISTURE	3,300	1,604	450	360	5,714
NUMBER OF UNITS	4,615	4,000	1,000	800	10,415
PERCENT MOISTURE					54.86 50 TO 65%
VOLATILE SOLIDS (%)	87.4%	98.3%	44.2%	98.3%	
VOLATILE SOLIDS (LBS)	4,034	3,932	442	786	9,194
TOTAL MASS (LBS)	4,615	4,000	1,000	800	10,415
MIX VS (%)					<mark>88.3%</mark> > 90%
DENSITY (LBS/CY)	1196	522.5	900	500	
DENSITY (KG/M3)	709.6	310.0	533.9	296.6	
% AIR SPACE	36.14	72.10	51.94	73.30	
FEEDSTOCK VOLUME (CY)	3.9	7.7	1.1	1.6	10
AIR VOLUME (CY)	1.4	5.5	0.6	1.2	7.3
PREDICTED FREE AIR SPAC	E				70.1% 40-60%

	KER D CONSULTING	10. Fax www.cok	4 Chasewood Ct Vinton VA 24179 (540) 890-1086 : (540) 890-1087 coker@verizon.net tercompost.com
Project	KPB Organics Feasibility Study	Proj. No	. 12-1125
Client	Nelson Engineering	Date	12/2/2012
Analysis	PFD - Seward Composting Facility		
Assumptions: 1. Facility is ope 2. Facility will us 3. Exhaust air to	en 5 days/week, 52 weeks/year se aerated static pile composting with negative aeration o be treated with biofilter		
Waste Generat	ion Quantities		
	T. Daily quantities	2.3 tons/day	
	Carbon	2.3 lons/day	
	Screened Compost (inoculant)	0.5 tons/day	
	Screen overs (bulking agent)	0.4 tons/day	
	Total Daily Tonnage	5.2 tons/day	
	Total Annual Tonnage 1,62	24.8 tons/yea	r
	2. Daily Volumes (ground up)		
	Food Scraps	3.9 CY/day	
	Carbon	7.7 CY/day	
	Screened Compost (inoculant)	1.1 CY/day	
	Screen overs (bulking agent)	1.6 CY/day	
	Total Daily Volumes	14.2 CY/day	
	Total Annual Volume 4,	438 CY/year	
Compositing M	atorials Flows		
1 Residence tim	nes for ASP composting (winter conditions)		
	Compositing (white conditions)	Total	
	ASP 45 days 30 days	1 Otdi	75 davs
2. Daily Volume	s going to compositing (assume 5% volume loss in grinding/mixing	a)	ro dayo
, , , , , , , , , , , , , , , , , , ,	Daily volumes of mixed feedstocks =		13.5 CY/day
3. Volume of ma	aterial in Primary Composting		
	Residence Days Mixed feedstocks		
	ASP 45 608 CY		
4. Daily Volumes	s going to curing (assume 30% volume shrink in composting)		
	Daily volumes of composted feedstocks =		9.5 CY/day
5. Volume of ma	aterial in Curing (Secondary Composting):		
	Residence Days Composted Feedstock	S	
	Windrow 30 284 CY		
6. Dally volume	s going to screening (assume 10% volume shrink in curing):		0 E CV/day
7 Screening	Daily volumes of cured reedstocks =		0.5 CT/uay
7. Otreening	a Assume approx 80% finished compost capture rate and 20%	6 agina to ove	re
	 b. Finished compost production (daily). 	s going to ove	10
	Daily volumes of screened compost =		6.8 CY/day
	Daily volumes of overs (mulch) =		1.7 CY/day
			-

co	KEF	Ž			104 ۷ Fax: <u>دین</u>	Chasewood Ct 'inton VA 24179 (540) 890-1086 (540) 890-1087 :oker@verizon.net
COMPOSIINC	AND CONSULIN			W	ww.coke	ercompost.com
Project	KPB Organic	s Feasibility Study		Proj	. NO.	12-1125
Analysis	ASP Sizing -	eening Seward Composting Facili	tv	Date	•	12/2/2012
Assumption	<u>s:</u>					
2. Facility w 3. Exhaust a	ill use aerated s air to be treated	tatic pile composting in co with biofilter	ncrete block bins wit	h negative aeratio	n	
Waste Gen	eration Quantit 1. Daily quan	ies tities				
		Food Scraps (SSO)		2.3 tons	/day	
		Carbon		2.0 tons	/day	
		Screened Compost (II	noculant)	0.5 tons	'day (day	
		Total Da	ily Tonnage	5.2 tons	'day	
		Total An	nual Tonnage	1,624.8 tons	/year	
	2. Daily Volur	nes (ground up)	-		-	
		Food Scraps		3.9 CY/c	lay	
		Carbon	aculant)	7.7 CY/0	lay	
		Screen overs (bulking	agent)	1.1 CT/0	lay lav	
		Total Da	ily Volumes	14.2 CY/c	lay	
		Total An	nual Volume	4,438 CY/y	ear	
Compostin	α Materials Flo	ws				
1. Residence	e times for ASP	composting (winter condit	ions)			
		Composting	Curing	Tota	I	
	ASP	30 days	60 da	ays	90	days
2. Daily Vol	umes going to c	omposting (assume 5% vo Daily volumes of mixe	olume loss in grinding d feedstocks =	g/mixing)	13.5	CY/day
3. Volume c	f material in Pri	mary Composting	Mixed feedatee	ko		
	ASP	30		Y		
4. Daily Vol	umes going to c	uring (assume 30% volum	e shrink in compostir	ng)		
	0 0	Daily volumes of com	posted feedstocks =	0,	9.5	CY/day
5. Volume c	f material in Cu	ring (Secondary Composti	ng):			
	Mindrow	Residence Days	Composted Fee	edstocks		
6 Daily Vol	imes going to s	creening (assume 10% vo	000 C Iume shrink in curing	1). 1		
0. 2 ally 1 al	unice genig te e	Daily volumes of cure	d feedstocks =	,,.	8.5	CY/day
7. Screening	g	·				-
	a. Assume ap	prox. 80% finished compo	st capture rate and 2	20% going to overs	5	
	b. Finished c	Ompost production (daily):	anad compost -		6.8	CV/day
		Daily volumes of over	s (mulch) =		1.7	CY/day
Feedstocks	s Receipt/Stora	ge Sizing Calculations				
a. Assum	e daily delivery	of feedstocks with 1 day s	torage capacity			
b. Assum	e 2 days storag	e inventory of amendment	s inside bldg.			
c. Assum	e all deliveries b	by SSO collection or dump	truck			
		Truck U	nioading Area =	30 ft. W 30 ft. L		
2. Ground Amendments storage a. Volumes - assume 2 days storage

			Daily		<u>Total</u>	
	(Carbon	7.7	CY	15	CY
:	Screened Compos	st (inoculant)	1.1	CY	2	CY
	Screen overs (bu	Iking agent)	1.6	CY	3	CY
					21	CY
b. Assume a	amendments store	d separately				
c. Assume r	maximum amendr	nent depth of			6	ft
d. Footprint	of carbon storage	bin			68.9	SF
	Assume bin width	of			8	ft
	Calculated bin len	gth			9	ft
	(Carbon Amendr	nents Stora	age Bin =	8	ft. W
					9	ft. L
					6	ft. D
e. Footprint	of compost storag	le bin			10.0	SF
	Assume bin width	of			4	ft
	Calculated bin len	gth			3	ft
	(Compost Ameno	dments Sto	orage Bin =	4	ft. W
					5	ft. L
					6	ft. D
f. Footprint	of overs storage bi	in			14.4	SF
	Assume bin width	of			4	ft
	Calculated bin len	gth			4	ft
	(Overs Amendme	ents Storag	ge Bin =	4	ft. W
					5	ft. L
					6	ft. D
Feedstock Mi	xing					
1. Daily Mix Vo	olumes					
a. SSO					3.9	CY/day
b. Amendm	ents				10.4	CY/day
				Total	14.2	CY/day
2. Daily mixing	y volume needed				14.2	CY/day
3. Mixing						
a. Assume l	bucket blending wi	th 4 CY bucket	on loader		4	CY
b. Number o	of mixing loads per	r day			4	loads/day
c. Assume 8	5% volume loss in	mixing				
d. Daily volu	ume going to comp	oosting			14	CY/day
4. Area neede	d				30	ft W
					30	ft L
Active Compo	osting					
1. Composting	residence time				35	days/cycle
2. Total volum	e in composting di	uring 1 cycle			498	CY/cycle
3. Assume one	e ASP bin filled ev	ery 5 days				-
	Bin volume				68	CY/bin
4. Assume AS	P bin height =				6	ft
5. Footprint of	each ASP =				304	SF
6. Assume AS	P bin width =				12	ft
7. Calculated	ASP bin length =				25	ft
8. Number of A	ASP bins in each c	cycle:				
	I otal volume in cy	cle/ vol of each	bin		8	bins/cycle
9. Area of activ	ve composting	- (h l al a		2,433	55
10. Assume 4	bins on each side	or open floor in	blag.			
11. Dimension		(5 0) 14	`			() N (
	wiath: (4 x 12' W)	+ (5 x 2' W wall	s)		58	πvv
	Length: 25' L x 2 +	- 50' aisle			100	πL

Composting Aeration System	
1. Volume of each bin	68 CY
2. Assumed bulk density of compostables	1.100 lbs/CY
3 Wet tonnage in each bin	37.2 wet tons
4. Assumed pile moisture content	50 %
5 Dry tonnage in each bin	18.6 dry tons
6 Aeration rate	750 CEH / dry ton
7 Agration needed for each bin	13 037 CEH
2. Ean Air Elow peodod	222 CEM/bin
o. Fall All Flow fielded	252 CFIM/bin
	250 CFM/DIT
Condensate Removal	
1. Accurace site attraction is 1000% acturated	
1. Assume all stream is 100% saturated	
2. Volume of each bin	
3. Assumed bulk density	
4. Weight of compostables in each bay	54,057 IDS
5. Assume moisture content =	50%
6. Weight of water in each bay's batch =	27,029 lbs
7. Assumed moisture content at completion	40%
Weight of water in each bay's batch at completion =	21,623 lbs
9. Water loss	5,406 lbs
Assume 30% evaporates out of pile when fan off	1,622 lbs
11. Remaining moisture migrating out through aeration system	3,784 lbs
12. Convert to gallons at 8.34 lbs/gal	454 gal
13. Daily production assuming a 28-day cycle	16 gal/day/bin
Biofilter System Does not include building air	
 Assume gas retention time = 	60 sec
2. Air flow to biofilter from all bins	2,000.0 CFM
3. Required biofilter volume	2,000 CF
Assumed biofilter depth =	4 ft
Assumed biofilter footprint =	500 SF
6. Biofilter dimensions =	20 ft W
	25 ft L
Curing System	
1. Assumed volume loss in composting	30 %
2. Volume of each ASP bin going to curing	47 CY/bin
Number of ASP bins going to curing monthly	8 bins
Total volume going to curing monthly	378 CY
5. Assumed curing residence time	2 months
6. Total volume in curing per cycle	757 CY/cycle
7. Assume cure pile turned with loader with 4 CY bucket	
8. Assumed cure pile height	7 ft
9. Footprint of cure pile	2,919 SF/cycle
10. Assume curing done in static pile in building	· · ·
14. Area Needed	30 ft W
	100 ft L
Screening System	
1. Assumed volume loss in curing	10 %
2. Monthly volume to screening	341 CY/month
3. Assumed percentage of "overs"	20%
4. Monthly volume of screened compost to storage	289 CY/month
5. Monthly volume of overs to storage	51 CY/month
6. Assume use of a TROM 406 trommel	
a. Dimensions: 25' L x 8' W	
7. Area Needed	25 ft W
	35 ft L

Product Storage

0	
1. Assumed winter storage period	5 months
2. Volume going to storage in winter	1,447 CY
3. Assumed storage pile height	8 ft
4. Storage pile footprint	4,885 SF
5. Assume storage in building	
6. Area Needed	50 ft W
	100 ft L

Area Summary Process

Process	<u>Width</u> (ft.)	Length (ft.)	<u>Area</u> (sq. ft.)	<u>Area</u> (acres)
Inside Building				
Truck Unloading Area	30	30	900	0.02
Carbon Amendments Storage	8	9	69	0.00
Compost Inoculant Storage	4	5	18	0.00
Overs Storage	4	5	18	0.00
Mixing	30	30	900	0.02
Composting Area	58	100	5,800	0.13
Curing Area	30	100	3,000	0.07
Screening Area	25	35	875	0.02
Product Storage Area	50	100	5,000	0.11
Outside Behind Building	-	Fotal	16,580	0.38
Biofilter	20	25	500	0.01
	-	Fotal	500	0.01

104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087

cscoker@verizon.net

COMPOSTING	5 and consulting					www.cokercompost.c			
Project	KPB Organics F	easibility Study				Proj. No		12-1	125
Client	Nelson Enginee	ring				Date		3/8/2	2013
Analysis	ASP Sizing - Se	ward Composti	ng Facility - I	ECS CV Svst	tem		rev		3/25/2013
· · · · · · · · · · · · · · · · · · ·									
Assumptions 1. Facility is 2. Facility wi 3. Exhaust a	<u>s:</u> open 5 days/week ill use ECS CV Sys air to be treated wit	s, 52 weeks/yea stem - 7 vessels h biofilter	r S						
Waste Gene	eration Quantities	3							
	1. Daily quantitie	es							
		Food Scraps	(SSO)		2.3	tons/day			
		Carbon			2.0	tons/day			
		Screened Co	mpost (inocu	lant)	0.5	tons/day			
		Screen overs	(bulking age	nt)	0.4	tons/day			
			Total Daily T	onnage	5.2	tons/day			
		- (I otal Annual	Ionnage	1,624.8	tons/yea	r		
	2. Daily volume	s (ground up)			2.0				
		Corbon			3.8 7 7	CV/day			
		Screened Co	mpost (inocu	lant)	1.1	CV/day			
		Screen overs	hulking age	nt)	1.1	CT/day			
		001001100013	Total Daily V	olumes	14 2	CY/day			
			Total Annual	Volume	4,438	CY/vear			
					.,				
Composting	g Materials Flows	;							
1. Residence	e times for ASP co	mposting (wint	er conditions)		-			
		Composting	dava	Curing		lotal	00	مامده	
	ASP man going to com	21		03 Loca in grind	y days		90	days	i
2. Daily Voit	ames going to com	posiliy (assuri	e 5% volume	e ioss in grind odetoeke –	ung/mixing)		125		lov
3 Volume o	f material in Prima	ry Composting		-usiocks -			13.5	01/0	lay
5. Volume o		Residence Da	avs	Mixed feeds	stocks				
	ASP	21	ayo	284	4 CY				
4. Daily Volu	imes aoina to curi	ng (assume 209	% volume sh	rink in compo	ostina)				
		Daily volumes	s of compost	ed feedstock	S =		10.8	CY/d	lav
5. Volume o	f material in Curing	g (Secondary C	omposting):						5
		Residence Da	ays	Composted	Feedstocks				
	Windrow	69	-	740	6 CY				
6. Daily Volu	umes going to scre	ening (assume	10% volume	shrink in cu	ring):				
		Daily volumes	s of cured fee	edstocks =			9.7	CY/d	lay
7. Screening	9								
	a. Assume appr	ox. 80% finishe	d compost ca	apture rate a	nd 20% going to	overs			
	b. Finished com	post production	n (daily):						
		Daily volumes	s of screened	l compost =			7.8	CY/d	lay
		Daily volumes	s of overs (m	ulch) =			1.9	CY/d	lay

	C	Organics Recycling Feasib	ility Study
Feedstocks Receipt/Storage Siz 1. Feedstock Receipts	ing Calculati	ions	
 a. Assume daily delivery of feed b. Assume 2 days storage investor c. Assume all deliveries by SSC 	ntory of amen O collection or	day storage capacity dments inside bldg. dump truck	
	Tr	ruck Unloading Area =	30 ft. W 30 ft. L
2. Ground Amendments storage a. Volumes - assume 2 days sto	orage		
2	U	Daily	Total
С	arbon	7.7 CY	15 CY
Screened Compost	(inoculant)	1.1 CY	2 CY
Screen overs (bul	king agent)	1.6 CY	3 CY
	ang agent)	1.0 01	21 CV
h Assume amendments stored	separately		21.01
	Separately		C #
c. Assume maximum amendme	ent depth of		0 It
d. Footprint of carbon storage b	in		68.9 SF
Assume bin width o	f		8 ft
Calculated bin leng	th		9 ft
C	arbon Amend	ments Storage Bin =	8 ft. W
		-	9 ft. L
			6 ft. D
e Footprint of compost storage	bin		10.0 SF
Assume bin width o	f		/ ft
Calculated bin long	' th		- 11 2 ft
		des auto Otano na Dia	
C	ompost Amen	idments Storage Bin =	4 ft. VV
			5 ft. L
			6 ft. D
f. Footprint of overs storage bin			14.4 SF
Assume bin width o	f		4 ft
Calculated bin lengt	th		4 ft
0	vers Amendm	ents Storage Bin =	4 ft W
0			5 ft 1
Feedeteck Mixing			0 II. D
Feedstock Mixing			
Included in ECS footprint			
Active Composting			
Included in ECS footprint			
11. Dimensions			
Width:			115 ft W
Length:			109 ft L
3			
Composting Aeration System Included in ECS footprint			
Oandanaata Damaa '			
Condensate Removal			
Included in ECS footprint			
Biofilter System Included in ECS footprint			

Curing System						
1. Assumed volume loss in compose	sting				20	%
2. Volume of each ECS CV going t	o curing				36	CY/bin
3. Number of ECS CVs going to cu	iring month	ly			7	bins
4. Total volume going to curing mo	nthly				252	CY
5. Assumed curing residence time					2.27	months
6. Total volume in curing per cycle					572	CY/cycle
7. Assume cure pile turned with loa	ader with 4	CY bucke	t insid	e bldg.		
8. Assumed cure pile height					8	ft
9. Footprint of cure pile					1,931	SF/cycle
10. Assume curing done in static p	ile in buildir	ng				
11. Allow extra 50% space for equi	p, screenin	g, storage	;		965	SF
12. Total building area needed					2,896	SF
13. Area Needed					40	ft W
					72	ft L
Screening System						
1. Assumed volume loss in curing					10	%
2. Monthly volume to screening					227	CY/month
3. Assumed percentage of "overs"					20%	
4. Monthly volume of screened cor	npost to sto	orage			193	CY/month
5. Monthly volume of overs to stora	age				34	CY/month
6. Assume use of a TROM 406 trop	mmel					
a. Dimensions: 25' L x 8' W						
7. Area Needed - included in curing	g building				25	ft W
					35	ft L
					875	SF
Product Storage						
1. Assumed winter storage period					5	months
2. Volume going to storage in winte	ər				964	CY
3. Assumed storage pile height					8	ft
4. Storage pile footprint					3,253	SF
5. Assume storage in building						
6. Area Needed - include in curing	building				40	ft W
					90	ft L
Area Summary						
Process	<u>Width</u>	Length		<u>Area</u>	<u>Area</u>	
	<u>(ft.)</u>	<u>(ft.)</u>		<u>(sq. ft.)</u>	<u>(acres)</u>	
Inside Building						
Truck Unloading Area	30		30	900	0.02	
Carbon Amendments Storage	8		9	69	0.00	
Compost Inoculant Storage	4		5	18	0.00	
Overs Storage	4		5	18	0.00	
Curing Area	40		72	2,896	0.07	
Screening Area	25		35	875	0.02	
Product Storage Area	40		90	3,600	0.08	

Subtotal

Total

109

115

Outside Behind Building ECS CV Compost System 8,376

12,535

20,911

0.19

0.29

0.48

Overview Siting Maps

- Soldotna Area Overview Map of Sites Evaluated
- Homer Area Overview Map of Sites Evaluated
- Seward Area Overview Map of Sites Evaluated

Figure 1

SITE ANALYSIS 6 Miles 0 1.5 3 L

Capital and Operating Cost Estimates

- Central Peninsula Landfill (CPL) Aerated Static Pile (ASP) System Capital Cost Estimate
- CPL ASP System Operating Cost Estimate
- CPL Engineered Compost Systems (ECS) "SV Composter" System Capital Cost Estimate
- CPL ECS "SV Composter" System Operating Cost Estimate
- Homer Facility ASP System Capital Cost Estimate
- Homer ASP System Operating Cost Estimate
- Homer ECS "CV Composter" Capital Cost Estimate
- Homer ECS "CV Composter" Operating Cost Estimate
- Seward Facility ASP System Capital Cost Estimate
- Seward ASP System Operating Cost Estimate
- Seward ECS "CV Composter" Capital Cost Estimate
- Seward ECS "CV Composter" Operating Cost Estimate

	KER					Fa	04 C Vir (ax: (hasewood Ct Iton VA 24179 540) 890-1086 540) 890-1087
COMPOSTING	AND CONSULTING					www.c	oker	compost.com
Project	KPB Organics Feasi	bility Study			Pro	j. No.	12-1	125
Client	Nelson Engineering				Date	е	2/22	2/2013
Analysis	Composting Capital	Expense Estimate - CPL						
Assumptio	ons site requires 3 feet of e	veavation and backfill wit	h Non-Frost-	Suscar	tible c	uravel inside	buil	dina
and 1' ex&	BE ouitside of building		11101111030	ouscep			, Duit	ang
2. Capacity	is 8.500 ton/vear food	scraps + 5.000 tons/vr gr	eenwaste					
Site size	,, , ,					5.0	ac	
	Processing building	footprint				125,273	SF	
	Allowance for acces	s roads, biofilter, equipme	ent maint.			125,273	SF	
	Total area needed					250,545	SF	
			Quantity	Unit	ı	Init Cost	F	tended Cost
Componer	nts		<u>addinity</u>	<u>onit</u>	<u> </u>	<u></u>	<u></u>	
1. Proce	essing Building							
		8" reinforced, w/ vapor					•	
Slab on gra	ide	barrier and subbase	125,273	SF	\$	12.00	\$	1,503,272
Slab & four	idation excavation	atter mass excav & fil)	125,273	51	¢ ¢	115.00	\$ ¢	35,076
Pre-engine	ered steel building	with insulated nanels	125 273	SF		40.00	գ Տ	5 010 906
r to origino	orod otoor building		120,210	0.	Ψ	10.00	Ψ	0,010,000
2. Servi	ces							
Exhaust far	ns/louvers		125,273	SF	\$	0.26	\$	32,571
Fire protect	ion sprinklers		125,273	SF	\$	3.49	\$	437,202
Standpipe a	and fire pump	400.000.0	125,273	SF	\$	1.88	\$	235,513
Fire Water	Storage tank	100,000 g?	105 070	сг	¢	0.49	\$ ¢	250,000
Lighting & F	oranch wiring	200 amp service	125,273	SF	ф \$	0.40 5.79	ф 5	725 329
Comm & se	ecurity	Alarms, emera lights	125,273	SF	\$	1.27	\$	159.096
Sewer conr	nection/septic field		allowance		·		\$	15,000
3. Com	oosting Bins & Biofilte	er						
Din wollo		16 bins, 128 lf, 8' H,	16204	сг	¢	42.00	¢	600 100
Blowers		12 1110K	10304	FΔ	φ 2	42.00	φ \$	24 000
Aeration pi	pina	3" PVC. 260 LF/bin	2080	LF	\$	3.25	\$	6.760
Exhaust pip	bing	4" - 8" spiral steel	800	LF	\$	3.70	\$	2,960
Biofilter			1000	SF	\$	6.00	\$	6,000
Condensate	e removal/recycling		allowance				\$	8,000
4. Sitew	ork							
Clearing an	d Grubbing		5	ac	\$	8,000.00	\$	40,000
NES group	u excavation	36" thick compacted	23,000	CY CV	¢	4.00	¢	92,000
Gravel pad	s for outdoor areas	12" thick, compacted	7.000	CV	ф \$	22.00	φ \$	154,000
Sediment/e	rosion control		allowance	cy	Ŷ		\$	15,000
						Subtotal	\$	9,699,743
				Con	tinger	ncy @ 25%	\$	2,424,936
						Subtotal	φ	12,124,078
Used Equi	pment							
Loader	Volvo L70	. .	3		\$	79,500	\$	238,500
2nd bucket	3 CY bucket	tor product only	2		\$	6,500	\$	13,000
Screen	WIIOCAL 612	17	1		\$ ¢	80 500	¢	85,000
Sindel	1 CICISUII 4400D 1101	12	I		φ	09,000	φ	09,000
						Subtotal	\$	426,000

CO	KER			104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 cscoker@verizon.net
COMPOSTING A	ND CONSULTING			www.cokercompost.com
Project	KPB Organics Feasibility Study		Proj. N	o. 12-1125
Client	Nelson Engineering		Date	2/26/2013
Analysis	Composting Operating Expense Estimate - CPL			
Assumption	S			
1. Labor rate	(loaded) per hour			\$25.00 per hour
2. Machine ra	ate (fuel + maintenance)			\$50.00 per hour
3. Electricity	rate			\$0.09 per kWh
4. Does not i	nclude amortized capital			
5. Facility is o	open 5 days/week, 52 weeks/year (260 days/yr)			
,				Annual Costs
Waste Recei	ipt			
Dailv inco	ming tonnage of food scraps	34.0	ton/dav	
,	Assume average of	2	tons/load	
	Number of loads	17.02	loads/day	
	Time to inspect each load	5	min/load	
	Time to push into pile	5	min/load	
	Total labor needed daily	170	mins	
	Loader operating cost	2.8 2.8	hrs/day hrs/day	\$18,438 \$36.875
		2.0		<i>+•••</i> ,•••
Daily inco	ming tonnage of carbon	20.0	ton/day	
	Assume average of 10	2	tons/load	
	Number of loads	10	loads/day	
	l ime to inspect each load	2	min/load	
	Total labor needed daily	5 70	mine	
		12	hrs/dav	\$7 583
	Loader operating cost	1.2	hrs/day	\$15,167
Feedstock	ations (s to mixing daily	166	CY/day	
Assume u	ise of 3-CY bucket on FEL to blend	100	Olivady	
Volume of	f loader bucket	6	CY	
Number o	f bucket movements daily	28	buckets/day	
Time to m	ove to mix pad & return	5	min/bucket	
Total labo	r needed daily	138	min/day	
		2.3	hrs/day	
Loader op	perating cost	2.3	hrs/day	
Annual la	por cost for mixing			\$14,951
Annual co	st of mixing			\$29,902
Pile Building Aeration pipir	g Operations			
Assume If	i-noor permanent piping - both compositing and cl	uning bays		
wood chips i	Area of each bay	1 258	SF	
	Depth of plenum	0.667	ft	
	Volume of plenum	31	CY each	
	Number of bays/year	167	bays/yr	

Total volume of plenum mat'ls.	5,184 CY	
Unit cost of wood chips	\$5.00 per CY	
Total cost of plenum materials		\$25,919
1. Time to install plenum	0.5 hr	
Number of bays built per year	167 piles/yr	
Annual cost of labor to install plenum		\$2,086
Annual machine cost to install plenum		\$4,171
5. Daily volume going to composting	149 CY/day	
6. Bucket size on loader	6 CY	
Number of bucket trips/day	25 trips/day	
Length of each trip	4 minutes	
Total time needed daily	99 min/day	
	1.7 hrs/day	
Annual cost of labor to build piles		\$10,765
9. Annual machine cost to build piles		\$21,529
Electricity for Composting		
1. Blower horsepower rating	1.5 hp	
Percent full load	75 %	
Motor nameplate efficiency	90 %	
Operating hours/yr (30 min on/30 min off/hr)	4380 hrs/year	
Annual cost of each motor	\$465	
2. Annual electricity cost for blowers		\$7,440
Biofilter Operations		
1. Assume pile blowers can discharge directly into biofilter		
2. Assume daily inspection of biofilter operations		
Labor to inspect daily	0.25 hrs/day	
3. Annual cost of labor to inspect biofilter		\$1,625
Bay Removal to Curing		
1. Daily volume going to curing	104 CY/day	
a. Assume one ASP torn down each day	-	
2. Bucket size on loader	6 CY	
3. Number of bucket trips/day	17 trips/day	
Length of each trip	3 minutes	
Total time needed daily	52 min/day	
	0.9 hrs/day	
Annual cost of labor to empty bays		\$5,651
5. Annual machine cost to empty bays		\$11,303
Curing Pile Tear-Down		
1. Daily volume going from curing to screening	94 CY/day	
2. Capacity of loader bucket	6 CY	
Number of loader trips needed per day	16 trips/day	
Assumed time to reach screen	3 minutes	
5. Time needed for windrow tear-down	0.8 hrs/day	
Annual cost of labor to empty bays		\$5,086
7. Annual machine cost to empty bays		\$10,173
Screening		
1. Assume trommel screen with 3/8" screen		
Feed rate	50 CY/hr	
Screening time per CY	0.02 hr/CY	
Screening time needed	1.9 hr/day	
2. Annual cost for labor to screen		\$12,207
3. Annual machine cost for screening		\$24,414

Moving Materials to Storage				
1. Daily overs production		19 CY/day		
2. Daily compost production		75 CY/day		
3. Capacity of loader bucket		6 CY		
Number of loader trips needed per day		16 trips/day		
Assumed time to reach storage		3 minutes		
Time needed weekly for storage		0.8 hrs/day		
Annual cost of labor for moving materials			\$5,086	
7. Annual machine cost for moving materials			\$10,173	
Loading out Compost to Market				
1. Annual compost production estimate	1953	1.2 CY/yr		
2. Average out-load truck size		40 CY		
3. Annual number of loads	4	188 loads		
Time needed to load truck		1 hr		
5. Annual loading time needed	4	188 hours/yr		
Annual cost of labor for truck load-out			\$12,207	
7. Annual machine cost for truck load-out			\$24,414	
Housekeeping				
 Assume 1 hr/day spent on housekeeping 		1 hrs/day		
Annual time spent housekeeping	2	260 hrs/yr		
3. Annual cost of labor for housekeeping			\$6,500	
	Subtotals		FTI	Fs
	Oubioiais	Labor	\$102 185	_3 20
		Machine Usage	\$188,120	2.0
		Consumables	\$33,359	
	Total	Concumation	\$323,664	
	i otai		<i>Q020,00</i>	
		Annual Tonnage	20,198 ton	s/yr

Cost per ton

\$16.02 per ton

	KER					F	104 (Vii (ax: (Chasewood Ct nton VA 24179 (540) 890-1086 (540) 890-1087
COMPOSTING A	ND CONSULTING					www.c	csco oker:	<u>ker@verizon.net</u>
Project	KPB Organics Feasib	ility Study			Proj	. No.	12-1	1125
Client	Nelson Engineering				Date	•	3/19	9/2013
Analysis	Composting Capital E	Expense Estimate - CPL -	ECS SV Sys	stem			rev	3/25/2013
1. Assumption and 2' ex & t 2. Capacity i 3. ECS quote	ite requires 3 feet of exe ofill outside of building s 600 ton/year food scra e is for 8 vessel SV Cor	cav and backfill with non aps + 500 tons/yr greenw nposter system with mixe	frost suscepti vaste er	ble grav	vel ins	ide building	I	
Sita siza						5.0	ac	
Sile Size	Processing building fo	otorint				30 318	SF	
	FCS system footprint	Jotphint				23,738	SF	
	Allowance for access	roads, equipment maint.				5,000	SF	
	Total area needed					59,056	SF	
Component	s ssina Buildina		<u>Quantity</u>	<u>Unit</u>	<u>L</u>	<u> Init Cost</u>	<u>E</u> :	xtended Cost
	Sonig Building	8" reinforced, w/ vapor						
Slab on grad	le	barrier and subbase	30,318	SF	\$	12.00	\$	363,811
Slab & found	lation excavation	after mass ex& fill	30,318	SF	\$	0.28	\$	8,489
l' foundation	n wall (push wall)		650	LF	\$	75.00	\$	48,750
re-enginee	red steer building		30,318	ЪГ	Ф	40.00	Φ	1,212,705
2. Servic	es		00.040	05	¢	0.00	•	7 000
Exhaust fans	S/IOUVERS		30,318	SF	\$ ¢	0.26	\$ ¢	7,883
Standpipe ar	nd fire pump		30,318	SF	Ψ \$	1.88	φ \$	56.997
ire water st	orage tank	50,000 g ?	,				\$	125,000
Electrical Se	rvice & distribution	200 amp service	30,318	SF	\$	0.48	\$	14,552
ighting & br	anch wiring	Alarma, amara liabta	30,318	SF	\$ ¢	5.79	\$	175,539
Sewer conn.	/septic field	Alarms, emerg lights	allowance	ЪГ	Ф	1.27	ֆ Տ	38,503 10,000
			anomanoo				Ψ	10,000
3. ECS C	omposting System, m	ixer & biofilter					¢	1 365 000
nstallation fe	ee - assume 50% of car	pital expense					φ \$	682.500
Biofilter med	ia	30' x 45' x 4'	200	CY	\$	15.00	\$	3,000
4. Sitewo	ork							
Clearing and	Grubbing		5	ac	\$	7,000	\$	35,000
Unclassified	Excavation		23,000	су	\$ ¢	4.00	\$ ¢	92,000
Gravel nade	for outdoor areas	12" thick compacted	7 000	cy cv	Ф \$	22.00 22.00	ф Я	308,000 154 000
Concrete pa	ds for ECS reactors		11132	SF	\$	12.00	\$	133,584
Asphalt pad	for rest of ECS system		12,606	SF	\$	6.00	\$	75,636
Sediment/er	osion control		allowance				\$	10,000
				-	_	Subtotal	\$	5,026,758
				Cont	ingen	Cy @ 25% Subtotal	\$ \$	1,256,690
						Sabiola	Ψ	0,200,440
Jsed Equip	ment				-			
Loader	Volvo L70 2 CV bucket	for product only	3		\$ ¢	79,500	\$ ¢	238,500
Screen	Trom 406	tor product only	2		Ф \$	0,500 85 000	Փ Տ	85 000
Grinder	Peterson 4400B horiz	1	1		\$	89,500	\$	89,500
						Subtotal	\$	426,000

					F www.c	104 Chasewood Ct Vinton VA 24179 (540) 890-1086 ax: (540) 890-1087 <u>cscoker@verizon.net</u> okercompost.com
Project	KPB Organics Feasibility Study			Proj N		12-1125
Client	Nelson Engineering			Date		3/10/2013
Analysis	Composting Operating Expense Estimate	- CPL -	ECS SV S	System		0/10/2010
Assumption		0				
1. Labor rate	(loaded) per hour				\$25.00	per hour
2 Machine ra	ite (fuel + maintenance)				\$50.00	per hour
3 Electricity	rate				90.00 90.02	per hour
4 Doos not in	ale				ψ0.03	perkwii
	verse E deve week E2 weeke weer (260 deve	() (r)				
5. Facility is c	pen 5 days/week, 52 weeks/year (260 days	5/yr)				Appuel Cente
Wasto Bosoi	nt					Annual Costs
	pi ming tennage of food scraps		24.0	ton/day		
Daily Incol	Assume average of		54.0 6	tons/load		
	Number of loads		5.67	loads/day		
	Time to inspect each load		5	min/load		
	·					
	Time to push into pile		5	min/load		
	Total labor needed daily		57	mins		
			0.9	hrs/day		\$6,146
	Loader operating cost		0.9	hrs/day		\$12,292
Daily inco	ming tonnage of carbon		20.0	ton/day		
Daily moo	Assume average of 10		6	tons/load		
	Number of loads		3.3	loads/day		
	Time to inspect each load		2	min/load		
	Time to transfer to storage		5	min/load		
	Total labor needed daily		23	mins		
			0.4	hrs/day		\$2,528
	Loader operating cost		0.4	hrs/day		\$5,056
Mixing oper	ations					
Feedstock	s to mixing daily		166	CY/day		
Assume u	se ECS mixer to mix		100	Oliday		
Volume of	loader bucket		6	CY		
Number of	f bucket movements daily		28	buckets/day		
Time to m	ove to mixer & return		5	min/bucket		
Total labo	r needed daily (in ECS estimate)		138	min/day		
			2.3	hrs/day		
Loader op	erating cost		2.3	hrs/day		
Annual lab	oor cost for mixing (in ECS labor estimate)					\$0
Annual loa	ader cost for mixing (mixer cost in ECS estin	nate be	elow)			\$29,902
ECS CV Sve	tem operating cost					
ECS estim	nated labor (3.0 FTE)		6240	hrs/yr		
ECS estim	nated electrical consumption		28	kW		
	Annual usage		8760	hrs/yr		
Loader op	erating hours to load/unload		800	hrs/yr		

Annual cost of labor to manage CV system Annual electrical cost for CV system Annual cost for loaders to load/unload		\$156,000 \$22,075 \$40,000
Biofilter Operations		
1. Assume pile blowers can discharge directly into biofilter		
Assume daily inspection of biofilter operations		
Labor to inspect daily (in ECS estimate) 3. Annual cost of labor to inspect biofilter	hrs/day	\$0
SV Container Contents Removal to Curing		
1. Daily volume going to curing	126 CY/day	
a. Assume one ASP torn down each day		
2. Bucket size on loader	6 CY	
Number of bucket trips/day	21 trips/day	
Length of each trip	3 minutes	
Total time needed daily	63 min/day	
	1.0 hrs/day	
4. Annual cost of labor to empty bays		\$6,818
5. Annual machine cost to empty bays		\$13,635
Curing Pile Tear-Down		
1. Daily volume going from curing to screening	113 CY/day	
2. Capacity of loader bucket	6 CY	
3. Number of loader trips needed per day	19 trips/day	
4. Assumed time to reach screen	3 minutes	
5. Time needed for windrow tear-down	0.9 ms/day	¢6 126
7. Annual machine cost to empty bays		\$12,272
Screening		
1 Assume trommel screen with 3/8" screen		
Feed rate	50 CY/hr	
Screening time per CY	0.02 hr/CY	
Screening time needed	2.3 hr/dav	
2. Annual cost for labor to screen	· · · · · ·	\$14,726
3. Annual machine cost for screening		\$29,452
Moving Materials to Storage		
1. Daily overs production	91 CY/day	
2. Daily compost production	23 CY/day	
3. Capacity of loader bucket	6 CY	
 Number of loader trips needed per day 	19 trips/day	
5. Assumed time to reach storage	3 minutes	
Time needed weekly for storage	0.9 hrs/day	
Annual cost of labor for moving materials		\$6,136
7. Annual machine cost for moving materials		\$12,272
Loading out Compost to Market		
1. Annual compost production estimate	1,771 CY/yr	
2. Average out-load truck size	20 CY	
3. Annual number of loads	89 loads	
4. Time needed to load truck	0.5 hr	
5. Annual loading time needed	44 hours/yr	
Annual cost of labor for truck load-out		\$1,107

Housekeeping 1. Assume 1 hr/day spent on housekeeping

Annual time spent housekeeping
 Annual cost of labor for housekeeping

Subtotals		FTEs	;
	Labor	\$206,096	4.0
	Machine Usage	\$139,168	
	Consumables	\$40,000	
Total		\$385,263	
	Annual Tonnage	20,198 tons/	yr
	Cost per ton	\$19.07 per to	on

1 hrs/day

260 hrs/yr

\$2,214

\$6,500

	KER					F	104 C Vir (ax: (Chasewood Ct hton VA 24179 540) 890-1086 540) 890-1087 ker@verizon oct
COMPOSTING A	ND CONSULTING					www.c	oker:	compost.com
Project	KPB Organics Feasib	ility Study			Proj	. No.	12-1	1125
Client	Nelson Engineering				Date)	2/22	2/2013
Analysis	Composting Capital E	xpense Estimate - Horr	ner					
Assumptior 1. Assume s and 2' ex & t 2. Capacity i	ns ite requires 3 feet of ex ofill outside of building s 1400 ton/year food so	cav and backfill with nor raps + 1000 tons/yr gre	n frost suscept enwaste	ible gra	vel ins	side buildin	g	
Site size						1.4	ac	
	Processing building for	ootprint				30,052	SF	
	Allowance for access	roads, biofilter, equipm	ent maint.			30,052	SF	
	Total area needed					60,104	SF	
			Quantity	Unit		Init Cost	E,	vtended Cost
Component	S		Suantity	<u>- 01111</u>	<u> </u>		<u> </u>	
1. Proces	sing Building							
<u>.</u>		8" reinforced, w/ vapor		05	•		•	
Slab on grac	le	barrier and subbase	30,052	SF	\$	12.00	\$	360,621
A' foundation	ation excavation	after mass exami	30,052	55	¢ ¢	0.28 75.00	¢ ¢	8,414
Pre-enginee	red steel building		30.052	SF	у \$	40.00	φ \$	1.202.070
2. Service	es Marin rana		20.050	05	¢	0.00	¢	7.040
Exnaust tans	5/IOUVERS		30,052	5F 9E	¢ ¢	0.26	\$ ¢	7,813
Standnine ar	nd fire nump		30,052	SF	φ \$	1.88	φ \$	56 497
Fire water st	orage tank	50,000g ?	00,002	0.	Ŷ		\$	125,000
Electrical Se	ervice & distribution	200 amp service	30,052	SF	\$	0.48	\$	14,425
Lighting & br	ranch wiring		30,052	SF	\$	5.79	\$	174,000
Comm & sec	curity	Alarms, emerg lights	30,052	SF	\$	1.27	\$	38,166
Sewer conne	ection/septic field		allowance				\$	15,000
3. Compo	osting Bins & Biofilter							
		8 bins, 86 lf, 6' H, 12"						
Bin walls		thick	4128	SF	\$	42.00	\$	173,376
Aeration nini	ina	8, 500 cim each 3" PVC 135 LE/bin	8 1080	LA	¢ 2	500.00 3.25	¢ ¢	4,000
Exhaust pipi	na	4" - 8" spiral steel	400	LF	φ \$	3.20	φ \$	1.480
Biofilter			1000	SF	\$	6.00	\$	6,000
Condensate	removal/recycling		allowance				\$	4,000
4. Sitewo	rk							
Clearing and	Grubbing		1.4	ac	\$	7,000.00	\$	9,800
	Excavation		5,600	су	\$ ¢	4.00	\$ ¢	22,400
Gravel nade	for outdoor areas	12" thick, compacted	3,400 1 700	cv	Ф \$	22.00 22.00	Φ \$	≥,500 37 400
Sediment/er	osion control		allowance	C)	Ŷ	22.00	\$	10,000
				-		Subtotal	\$	2,420,354
				Cont	ingen	cy @ 25%	\$	605,088
						Subtotal	Þ	3,025,442
Used Equip	ment							
Loader	Volvo L70		2		\$	79,500	\$	159,000
2nd bucket	3 CY bucket	for product only	1		\$	6,500	\$	6,500
Screen	Trom 406		1		\$	47,900	\$	47,900
Grinder	reterson 4400B noriz	-	1		Φ	89,500	Φ	89,500
						Subtotal	\$	302 000

CO	KER			104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 cscoker@verizon.net
COMPOSTING A	ND CONSULTING			www.cokercompost.com
Project	KPB Organics Feasibility Study		Proj. N	o. 12-1125
Client	Nelson Engineering		Date	2/26/2013
Analysis	Composting Operating Expense Estimate - H	lomer		
Assumption	IS			
1. Labor rate	(loaded) per hour			\$25.00 per hour
2. Machine ra	ate (fuel + maintenance)			\$50.00 per hour
3. Electricity	rate			\$0.09 per kWh
4. Does not i	nclude amortized capital			•••••• F •• ••••
5. Facility is	open 5 days/week, 52 weeks/year (260 days/y	-)		
		1		Annual Costs
Waste Rece	int			<u>, , , , , , , , , , , , , , , , , , , </u>
Daily inco	ming tonnage of food scraps	58	ton/day	
Daily mod	Assume average of	2	tons/load	
	Number of loads	2.88	loads/day	
	Time to inspect each load	5	min/load	
	Time to push into pile	5	min/load	
	Total labor needed daily	29	mins	¢0.405
	Loader operating cost	0.5	hrs/day hrs/day	\$3,125 \$6,250
		0.0	ins/day	ψ0,200
Daily inco	ming tonnage of carbon	4.0	ton/day	
	Assume average of 10	2	tons/load	
	Number of loads	2	loads/day	
	Time to inspect each load	2	min/load	
	Lime to transfer to storage	5	min/load	
	l otal labor needed dally	14	mins bre/dov	¢1 517
	Loader operating cost	0.2	hrs/day	\$1,517 \$3,033
		0.2	ino, ady	40,000
Mixing oper	ations			
Feedstoc	ks to mixing daily	31	CY/day	
Assume ι	ise of 3-CY bucket on FEL to blend			
Volume o	f loader bucket	3	CY	
Number c	of bucket movements daily	10	buckets/day	
Time to m	nove to mix pad & return	5	min/bucket	
i otal labo	or needed dally	51	min/day	
Loador or	orating cost	0.9	hrs/day	
	bor cost for mixing	0.9	TITS/Udy	\$5 529
Annual co	ost of mixing			\$11,058
	0			
Pile Building Aeration pipi	g Operations ng			
Assume i	n-floor permanent piping - both composting and	d curing bays		
wood chips	for aeration plenum - both bay types	<u> </u>		
	Area of each bay Depth of plenum	020 - 22 0	7 ft	
	Volume of plenum	0.007	5 CY each	
	Number of bays/year	83	3 bays/yr	

Total volume of plenum mat'ls.	1,278 CY	
Unit cost of wood chips	\$5.00 per CY	
Total cost of plenum materials		\$6,390
1. Time to install plenum	0.5 hr	
2. Number of bays built per year	83 piles/yr	• · · · ·
3. Annual cost of labor to install plenum		\$1,043
4. Annual machine cost to install plenum		\$2,086
5. Daily volume going to composting	14 CY/day	
6. Bucket size on loader		
7. Number of bucket trips/day	5 trips/day	
Length of each trip	4 minutes	
rotal time needed daily		
8 Annual cost of labor to build piles	0.5 ms/day	\$1 052
9 Annual machine cost to build piles		\$3,904
5. Annual machine cost to build piles		ψ0,00+
Electricity for Composting		
1. Blower horsepower rating	1 hp	
Percent full load	75 %	
Motor nameplate efficiency	90 %	
Operating hours/yr (30 min on/30 min off/hr)	4380 hrs/year	
Annual cost of each motor	\$310	
2. Annual electricity cost for blowers		\$2,480
Biofilter Operations		
1. Assume pile blowers can discharge directly into blotiliter		
2. Assume daily inspection of biointer operations	0.25 bro/dov	
2 Appual cost of labor to inspect biofilter	0.25 ms/day	\$1.625
3. Annual cost of labor to inspect biolitier		φ1,025
Bay Removal to Curing		
1. Daily volume going to curing	19 CY/day	
a. Assume one ASP torn down each day	ý	
2. Bucket size on loader	3 CY	
Number of bucket trips/day	6 trips/day	
Length of each trip	3 minutes	
Total time needed daily	19 min/day	
	0.3 hrs/day	
Annual cost of labor to empty bays		\$2,090
5. Annual machine cost to empty bays		\$4,180
Curing Pile Tear Down		
1 Daily volume going from curing to screening	17 CV/day	
2 Capacity of loader bucket		
3 Number of loader trips needed per day	6 trips/day	
4 Assumed time to reach screen	3 minutes	
5. Time needed for windrow tear-down	0.3 hrs/day	
6. Annual cost of labor to empty bays		\$1.881
7. Annual machine cost to empty bays		\$3,762
1.9 - 9 -		+-, -
Screening		
1. Assume trommel screen with 3/8" screen		
Feed rate	50 CY/hr	
Screening time per CY	0.02 hr/CY	
Screening time needed	0.3 hr/day	* ~ ~
2. Annual cost for labor to screen		\$2,257
3. Annual machine cost for screening		\$4,514

Moving Materials to Storage				
1. Daily overs production		3 CY/day		
2. Daily compost production		14 CY/day		
3. Capacity of loader bucket		3 CY		
Number of loader trips needed per day		6 trips/day		
Assumed time to reach storage		3 minutes		
Time needed weekly for storage	(0.3 hrs/day		
Annual cost of labor for moving materials			\$1,881	
7. Annual machine cost for moving materials			\$3,762	
Loading out Compost to Market				
 Annual compost production estimate 	361	1.3 CY/yr		
2. Average out-load truck size		20 CY		
3. Annual number of loads	1	81 loads/yr		
Time needed to load truck	(0.5 hr		
Annual loading time needed		90 hours/yr		
Annual cost of labor for truck load-out			\$2,257	
7. Annual machine cost for truck load-out			\$4,514	
Housekeeping				
 Assume 1 hr/day spent on housekeeping 		1 hrs/day		
2. Annual time spent housekeeping	2	260 hrs/yr		
3. Annual cost of labor for housekeeping			\$6,500	
	Subtotals			ETEc
	Subiolais	Labor	\$31.656	0.6
		Machine Usage	\$47.062	0.0
		Consumables	φ + 1,002 \$8,870	
	Total	Consumables	\$87.588	
			÷==,000	
		Annual Tonnage	3,628	tons/yr

Cost per ton

\$24.14 per ton

co	KER					F	104 Vi ax: <u>csco</u>	Chasewood Ct inton VA 24179 (540) 890-1086 (540) 890-1087 oker@verizon.net rcompost.com
Project	KPB Organics Feasib	ility Study			Proi	No	12-	1125
Client	Nelson Engineering	inty Otday			Date		3/1	9/2013
Analysis	Composting Capital F	xpense Estimate - Home	er - ECS CV S	System	Date	•	0/1	5/2015
Assumption	s							
1. Assume si and 2' ex & b 2. Capacity is 3. ECS quote	te requires 3 feet of exe fill outside of building s 600 ton/year food scra e is for 14 vessel CV Co	cav and backfill with non aps + 500 tons/yr greenw omposter system with mi:	frost suscept vaste xer	ible gra	ivel ins	ide building	9	
Site size						0.8	ac	
	Processing building fo	otorint				17.441	SF	
	ECS system footprint					17.985	SF	
	Allowance for access	roads, equipment maint				2.500	SF	
	Total area needed					37,926	SF	
						·		
Commonant	_		<u>Quantity</u>	<u>Unit</u>	<u>L</u>	<u> Init Cost</u>	E	xtended Cost
1. Proces	s sing Building							
	0 0	8" reinforced, w/ vapor						
Slab on grad	e	barrier and subbase	17,441	SF	\$	12.00	\$	209,288
Slab & found	ation excavation	after mass ex& fill	17,441	SF	\$	0.28	\$	4,883
4' foundation	wall (push wall)		520	LF	\$	75.00	\$	39,000
Pre-engineei	ed steel building		17,441	SF	\$	40.00	\$	697,627
2. Servic	es							
Exhaust fans	/louvers		17,441	SF	\$	0.26	\$	4,535
Fire protection	on sprinklers		17,441	SF	\$	3.49	\$	60,868
Standpipe ar	nd fire pump	F0 000 = 0	17,441	SF	\$	1.88	\$	32,788
Fire water st	Drage tank	50,000 g ? 200 amp service	17 441	SE	¢	0.48	¢ ¢	125,000
Lighting & br	anch wiring	200 amp service	17,441	SF	φ \$	5.79	φ \$	100,981
Comm & sec	urity	Alarms, emerg lights	17,441	SF	\$	1.27	\$	22,150
Sewer conn.	septic field	, , ,	allowance				\$	10,000
2 505 0	omnocting System m	iver 8 biefilter						
Per budget e	stimate						\$	1,297.000
Installation fe	e - assume 50% of cap	bital expense					\$	648,500
1 Sitowa	rk							
Clearing and	Grubbing		0.8	ас	\$	7.000.00	\$	5 600
Unclassified	Excavation		3100	CV	\$	4.00	\$	12.400
NFS Gravel	packfill for building		1850	cý	\$	22.00	\$	40,700
Gravel pads	for outdoor areas	12" thick, compacted	1250	су	\$	22.00	\$	27,500
Concrete par	s for ECS containers		6540	SF	\$	12.00	\$	78,480
Aspnalt pad	for rest of ECS system		11,445 allowanaa	SF	\$	6.00	\$ ¢	68,670
Seument/ef(anowance				φ	10,000
						Subtotal	\$	3,504,342
				Con	tingen	cy @ 25%	\$	876,086
						Subtotal	\$	4,380,428
Used Equip	ment							
Loader	Volvo L70		1		\$	79,500	\$	79,500
2nd bucket	3 CY bucket	for product only	1		\$	6,500	\$	6,500
Screen	Trom 406	-	1		\$	47,900	\$	47,900
Grinder	Peterson 4400B horiz	:	1		\$	89,500	\$	89,500
						Subtotal	\$	223 400
						Castoldi	Ψ	220,400

co	KER			104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 <u>cscoker@verizon.net</u>
COMPOSIING A	KDD Organiza Fassibility Otyphy		Desi Ma	
Project	KPB Organics Feasibility Study		Proj. No	o. 12-1125
Client	Nelson Engineering		Date	3/19/2013
Analysis	Composting Operating Expense Estimate - F	lomer - ECS		
Assumption				•·
1. Labor rate	e (loaded) per hour			\$25.00 per hour
2. Machine r	ate (fuel + maintenance)			\$50.00 per hour
Electricity	rate			\$0.09 per kWh
4. Does not	nclude amortized capital			
5. Facility is	open 5 days/week, 52 weeks/year (260 days/y	r)		
				Annual Costs
Waste Rece	ipt			
Dailv inco	oming tonnage of food scraps	5.8	ton/dav	
,	Assume average of	2	tons/load	
	Number of loads	2.88	loads/day	
	Time to inspect each load	5	min/load	
	Time to push into pile	5	min/load	
	Total labor needed daily	29	mins	
		0.5	hrs/day	\$3,125
	Loader operating cost	0.5	hrs/day	\$6,250
Deilyiner	ming tenness of earlier	1.0	top/dov/	
Daily inco		4.0	ton/day	
	Number of loads	2	loads/day	
	Time to inspect each load	2	min/load	
	Time to transfer to storage	5	min/load	
	Total labor needed daily	14	mins	
	· · · · · · · · · · · · · · · · · · ·	0.2	hrs/day	\$1,517
	Loader operating cost	0.2	hrs/day	\$3,033
Mixing oper	ations			
Feedstoc	ks to mixing daily	31	CY/day	
Assume	use ECS mixer to mix	0	0)/	
Volume c	f loader bucket	3	CY by alvata /day	
	or bucket movements daily	10	buckets/day	
Total labo	nove to mixer a return	51	min/bucket	
	in Leo estimate)	0.9	hrs/day	
Loader o	perating cost	0.9	hrs/day	
Annual la	bor cost for mixing (in ECS labor estimate)	0.0		\$0
Annual lo	ader cost for mixing (mixer cost in ECS estimation	te below)		\$11,058
	~ `	,		
ECS CV Sys	stem operating cost			
ECS estin	nated labor (1.0 FTE)	2080) hrs/yr	
ECS estir	nated electrical consumption	10.4	4 KVVh	
	Annual usage	8760) nrs/yr	
EUS est	mated roll-off truck usage	300) nrs/yr	

Annual cost of labor to manage CV system Annual electrical cost for CV system Annual cost for roll-off truck to empty CV containers		\$52,000 \$8,199 \$15,000
Biofilter Operations		
Included in ECS estimate		
Replace biofilter media annually		
Media volume = 2(10' x 20' x 4') = 1600 cf = Media cost =	60 CY/yr \$ 15.00 CY	\$ 900
CV Container Contents Removal to Curing		
 Daily volume going to curing 	23 CY/day	
a. Assume one ASP torn down each day		
2. Bucket size on loader	3 CY	
3. Number of bucket trips/day	8 trips/day	
Length of each trip	3 minutes	
I otal time needed daily	23 min/day	
4 Annual and of labor to among hours	0.4 hrs/day	¢0 504
4. Annual cost of labor to empty bays		\$Z,5Z1
5. Annual machine cost to empty bays		\$5,042
Curing Pile Tear-Down		
1. Daily volume going from curing to screening		
2. Capacity of loader bucket	3 C Y	
3. Number of loader trips needed per day	7 thps/day	
4. Assumed time to reach screen	3 minutes	
6. Appual cost of labor to empty have	0.3 ms/day	\$2,260
7. Annual machine cost to empty bays		\$4,538
Screening		
1. Assume trommel screen with 3/8" screen		
Feed rate	50 CY/hr	
Screening time per CY	0.02 hr/CY	
Screening time needed	0.4 hr/day	
2. Annual cost for labor to screen		\$2,723
3. Annual machine cost for screening		\$5,446
Moving Materials to Storage		
1. Daily overs production	4 CY/day	
2. Daily compost production	17 CY/day	
3. Capacity of loader bucket	3 CY	
4. Number of loader trips needed per day	7 trips/day	
5. Assumed time to reach storage	3 minutes	
6. Time needed weekly for storage	0.3 hrs/day	\$ 0,000
6. Annual cost of labor for moving materials		\$2,269
7. Annual machine cost for moving materials		\$4,538
Loading out Compost to Market		
1. Annual compost production estimate	1,771 CY/yr	
2. Average out-load truck size	20 CY	
3. Annual number of loads	89 loads	
4. I me needed to load truck	0.5 hr	
5. Annual loading time needed	44 hours/yr	€ 4 407
b. Annual cost of lador for truck load-out		\$1,107

7. Annual machine	cost for	truck	load-out
-------------------	----------	-------	----------

Housekeeping 1. Assume 1 hr/day spent on housekeeping

- Annual time spent housekeeping
 Annual cost of labor for housekeeping

Subtotals		FTEs	
	Labor	\$74,030	1.4
	Machine Usage	\$50,318	
	Consumables	\$15,900	
Total		\$140,248	
	Annual Tonnage	3,628 tons/yr	
	Cost per ton	\$38.65 per ton	Ì

1 hrs/day

260 hrs/yr

\$2,214

\$6,500

	KER					I	104 C Vin (ax: (Chasewood Ct Iton VA 24179 540) 890-1086 540) 890-1087
COMPOSTING	AND CONSULTING					www.	coker	compost.com
Project	KPB Organics Feasit	pility Study			Pro	i. No.	12-1	125
Client	Nelson Engineering				Date	, Ə	2/22	/2013
Analysis	Composting Capital E	Expense Estimate - Sewa	rd					
Assumption	ns							
1. Assume s	ite requires 3 feet of ex	cav and backfill with non	frost suscept	ible grav	vel ins	side buildin	g	
and 2' ex &	bfill outside of building							
2. Capacity	is 600 ton/year food scr	aps + 500 tons/yr greenw	aste					
Site size						0.8	ac	
	Processing building f	ootprint				16,580	SF	
	Allowance for access	roads, biofilter, equipme	nt maint.			16,580	SF	
	Total area needed					33,161	SF	
			Quantity	Unit		Init Cost	E.	rtended Cost
Componen	ts		Quantity		<u> </u>		<u>E)</u>	Cience Cost
1. Proce	ssing Building							
		8" reinforced, w/ vapor						
Slab on grad	le	barrier and subbase	16,580	SF	\$	12.00	\$	198,964
Slab & found	dation excavation	after mass ex& fill	16,580	SF	\$	0.28	\$ \$	4,642
Pre-enginee	red steel building		520 16 580	SF	ֆ Տ	75.00 40.00	Ф 5	59,000 663 212
	ica steel ballang		10,000	0.	Ψ	40.00	Ψ	000,212
2. Servic	es							
Exhaust fan	s/louvers		16,580	SF	\$	0.26	\$	4,311
Fire protecti Standning a	on sprinkiers		16,580	SF	\$ ¢	3.49)	57,865
Fire water s	torage tank	50.000 q ?	10,300	51	φ	1.00	γφ \$	125.000
Electrical Se	ervice & distribution	200 amp service	16,580	SF	\$	0.48	\$	7,959
Lighting & b	ranch wiring		16,580	SF	\$	5.79	\$	96,000
Comm & se	curity	Alarms, emerg lights		SF	\$	1.27	\$	21,057
Sewer conn	/septic field		allowance				\$	10,000
3. Comp	osting Bins & Biofilter							
•	U	8 bins, 62 lf, 6' H, 12"						
Bin walls		thick	2976	SF	\$	42.00	\$	124,992
Blowers		8, 250 cfm each	8	EA	\$	250.00	\$	2,000
Aeration pip Exhaust pipi	ing	3" PVC, 75 LF/DIN 4" - 8" spiral steel	600 300		¢ ¢	3.25	¢ ¢	1,950
Biofilter	ilg		500	SF	\$	6.00	\$	3,000
Condensate	removal/recycling		allowance				\$	2,000
4 01	1-							
4. Sitewo	d Grubbing		0.8	ac	\$	7,000.00	\$	5 600
Unclassified	Excavation		3100	cy	\$	4.00	\$	12,400
NFS Gravel	backfill for building		1850	cý	\$	22.00	\$	40,700
Gravel pads	for outdoor areas	12" thick, compacted		су	\$	22.00	\$	27,500
Sediment/er	osion control		allowance				\$	10,000
						Subtotal	\$	1,490.433
				Cont	inger	ncy @ 25%	\$	372,608
						Subtotal	\$	1,863,041
lleod Equin	mont							
Loader	Volvo L70		1		\$	79.500	\$	79.500
2nd bucket	3 CY bucket	for product only	1		\$	6,500	\$	6,500
Screen	Trom 406		1		\$	47,900	\$	47,900
Grinder	Peterson 4400B horiz	Ζ	1		\$	89,500	\$	89,500

col	KER			104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 <u>cscoker@verizon.net</u>
COMPOSTING A	ND CONSULTING			www.cokercompost.com
Project	KPB Organics Feasibility Study		Proj. No	b. 12-1125
Client	Nelson Engineering		Date	3/19/2013
Analysis	Composting Operating Expense Estim	ate - Seward - ECS		
Assumption	S			• ·· ·
1. Labor rate	(loaded) per hour			\$25.00 per hour
2. Machine ra	ate (fuel + maintenance)			\$50.00 per hour
3. Electricity	rate			\$0.09 per kWh
4. Does not i	nclude amortized capital			
5. Facility is o	open 5 days/week, 52 weeks/year (260 o	days/yr)		
				Annual Costs
Waste Recei	ipt			
Daily inco	ming tonnage of food scraps	2.3	ton/day	
-	Assume average of	2	tons/load	
	Number of loads	1.15	loads/day	
	Time to inspect each load	5	min/load	
	Time to push into pile	5	min/load	
	Total labor needed daily	12	mins	
		0.2	hrs/day	\$1,250
	Loader operating cost	0.2	hrs/day	\$2,500
Daily inco	ming tonnage of carbon	2.0	ton/day	
	Assume average of 10	2	tons/load	
	Number of loads	1	loads/day	
	Time to inspect each load	2	min/load	
	Time to transfer to storage	5	min/load	
	Total labor needed daily	7	mins	*---
	Londor operating cost	0.1	hrs/day	\$758 \$1.547
	Loader operating cost	0.1	nis/day	۵۱,۵۱ <i>۲</i>
Mixing operation	ations			
Feedstock	ks to mixing daily	14	CY/dav	
Assume u	se ECS mixer to mix		,	
Volume of	loader bucket	3	CY	
Number o	f bucket movements daily	5	buckets/day	
Time to m	ove to mixer & return	5	min/bucket	
Total labo	r needed daily (in ECS estimate)	24	min/day	
		0.4	hrs/day	
Loader op	erating cost	0.4	hrs/day	\$ 2
Annual lai Annual loa	ader cost for mixing (in ECS labor estimated ader cost for mixing (mixer cost in ECS e	te) estimate below)		\$0 \$5,137
ECS CV Sys	tem operating cost			
ECS estin	nated labor (0.5 FTE)	1040) hrs/yr	
ECS estin	nated electrical consumption	5.2	2 kWh	
	Annual usage	8760) hrs/yr	
ECS esti	mated roll-off truck usage	300) hrs/yr	

				\$15,000
Biofilter Operations				
1. Assume pile blowers can discharge directly into biofilte	r			
2. Assume daily inspection of biofilter operations			hro/dov	
2 Appual cost of labor to inspect biofilter			nis/day	¢۵
4 Annual replacement of hiofilter media				ψΟ
Media volume = $10' \times 20' \times 4' = 800 \text{ cf} =$		30	CY/vr	
Media cost =	\$	15.00	CY	\$450
CV Container Contents Removal to Curing				
1. Daily volume going to curing		9	CY/day	
a. Assume one ASP torn down each day				
2. Bucket size on loader		3	CY	
3. Number of bucket trips/day		3	trips/day	
Length of each trip		3	minutes	
Total time needed daily		9	min/day	
		0.2	hrs/day	
4. Annual cost of labor to empty bays				\$1,025
5. Annual machine cost to empty bays				\$2,050
Curing Pile Tear-Down				
1. Daily volume going from curing to screening		9	CY/day	
2. Capacity of loader bucket		3	CY	
3. Number of loader trips needed per day		3	trips/day	
4. Assumed time to reach screen		3	minutes	
5. Time needed for windrow tear-down		0.1	hrs/day	
6. Annual cost of labor to empty bays				\$922
7. Annual machine cost to empty bays				\$1,845
Screening				
1 Assume trommel screen with 3/8" screen				
Feed rate		50	CY/hr	
Screening time per CY		0.02	br/CY	
Screening time per en		0.02	hr/dav	
2 Annual cost for labor to screen		0.2	maay	\$1 107
3. Annual machine cost for screening				\$2,214
Moving Materials to Storage		2		
2. Daily overs production		2		
2. Daily compost production		1	CY/day	
3. Capacity of loader bucket		ა ი		
4. Number of loader tips needed per day		ა ე	minutes	
5. Assumed time to reach storage		د 1	minutes	
6. Annual east of labor for maying materials		0.1	nis/day	¢000
 Annual cost of labor for moving materials Annual machine cost for moving materials 				045 ¢1
7. Annual machine cost for moving materials				۵1,845
Loading out Compost to Market				
1. Annual compost production estimate		1,771	CY/yr	
2. Average out-load truck size		20	CY	
3. Annual number of loads		89	loads	

Time needed to load truck	0.5 hr	
5. Annual loading time needed	44 hours/yr	
6. Annual cost of labor for truck load-out		\$1,107
7. Annual machine cost for truck load-out		\$2,214
Housekeeping		
 Assume 1 hr/day spent on housekeeping 	1 hrs/day	
2. Annual time spent housekeeping	260 hrs/yr	
3. Annual cost of labor for housekeeping		\$6,500
	6	
	Subtotals	FIEs
	Labor	\$39,592 0.8
	Machine Usage	\$23,420
	Consumables	\$15,450
	Total	\$78,461
	Annual Tonnage	1,625 tons/yr
	Cost per ton	\$48.29 per ton

col	KER					F	104 C Vir (ax: (<u>csco</u>	Chasewood Ct nton VA 24179 540) 890-1086 540) 890-1087 ker@verizon.net
COMPOSTING A	ND CONSULTING					www.c	oker	compost.com
Project	KPB Organics Feasib	ility Study			Pro	j. No.	12-1	125
Client	Nelson Engineering				Dat	е	3/19	/2013
Analysis	Composting Capital E	Expense Estimate - Sewa	ard - ECS CV	System	ı			
Assumption	S	·						
 Assume si and 2' ex & b Capacity is ECS quote 	te requires 3 feet of exe fill outside of building 6 600 ton/year food scra 9 is for 7 vessel CV Cor	cav and backfill with non aps + 500 tons/yr greenv nposter system with mix	frost suscept vaste er	tible gra	vel in	side building		
Site size						0.8	ac	
	Processina buildina fo	potprint				8.376	SF	
	ECS system footprint					12 535	SF	
	Allowance for access	roade equipment maint				2 500	SE	
	Total area needed	roads, equipment maint				2,300	SF	
			Quantity	Linit		Linit Cont	Ε,	standed Cost
Components	5		Quantity	<u>Unit</u>	-	Unit Cost	<u> </u>	<u>klended Cosl</u>
1. Proces	sing Building							
		8" reinforced, w/ vapor						
Slab on grad	e	barrier and subbase	8,376	SF	\$	12.00	\$	100,515
Slab & found	ation excavation	after mass ex& fill	8,376	SF	\$	0.28	\$	2,345
4' foundation	wall (push wall)		400		\$	75.00	\$	30,000
Pre-engineer	ed steel building		8,376	5F	\$	40.00	\$	335,050
2. Service	es							
Exhaust fans	/louvers		8,376	SF	\$	0.26	\$	2,178
Fire protectio	n sprinklers		8,376	SF	\$	3.49	\$	29,233
Standpipe an	id fire pump	50.000	8,376	SF	\$	1.88	\$	15,747
Fire water sto	orage tank	50,000 g ?	0.070	05	^	0.40	\$	125,000
Electrical Sei	VICE & distribution	200 amp service	8,376	SF	\$ ¢	0.48	\$ ¢	4,021
Comm & soc	anch winng	Alarma omora lighta	0,370	OF QE	ф Ф	5.79 1.27	¢ D	40,490
Sewer conn./	septic field	Alaritis, emerg lights	allowance	51	φ	1.27	φ \$	10,000
							Ŧ	,
3. ECS Co	omposting System, m stimate	lixer & biofilter					\$	797 000
Installation fe	e - assume 50% of cap	oital expense					\$	398,500
4. Sitewo	rk Crubbing		0.0		¢	7 000 00	¢	F 000
Upplocosified	Grupping		0.8		\$ ¢	1,000.00	ሮ	5,600
NES Gravel k	EXCavalion		1950		¢ ¢	4.00	¢ D	12,400
Gravel pads t	for outdoor areas	12" thick compacted	1250		Ψ \$	22.00	Ψ \$	27 500
Concrete page	ts for ECS containers		3270) SF	\$	12.00	Ψ \$	39 240
Asphalt pad f	for rest of ECS system		9265	SF	\$	6.00	\$	55.590
Sediment/erc	osion control		allowance		Ŧ		\$	10,000
						Subtotal	\$	2,099.756
				Cont	ingei	ncy @ 25%	\$	524,939
					0	Subtotal	\$	2,624,695
					¢	70 500	¢	70 500
2nd bucket	3 CV buckot	for product only	1		Ф Ф	19,500	¢	19,500
Screen	Trom 406		1		φ æ	47 900	φ \$	47 900
Grinder	Peterson 4400B horiz	1	1		\$	89,500	\$	89.500
			•		Ŷ	22,000	Ŧ	23,000
						Subtotal	\$	223.400

col	KER			104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 <u>cscoker@verizon.net</u>
COMPOSTING A	ND CONSULTING			www.cokercompost.com
Project	KPB Organics Feasibility Study		Proj. No	o. 12-1125
Client	Nelson Engineering		Date	3/19/2013
Analysis	Composting Operating Expense Estir	nate - Seward - ECS		
Assumption	S			
1. Labor rate	(loaded) per hour			\$25.00 per hour
2. Machine ra	ate (fuel + maintenance)			\$50.00 per hour
3. Electricity	rate			\$0.09 per kWh
4. Does not i	nclude amortized capital			
5. Facility is o	open 5 days/week, 52 weeks/year (260	days/yr)		
				Annual Costs
Waste Recei	pt			
Daily inco	ming tonnage of food scraps	2.3	ton/day	
-	Assume average of	2	tons/load	
	Number of loads	1.15	loads/day	
	Time to inspect each load	5	min/load	
	Time to push into pile	5	min/load	
	Total labor needed daily	12	mins	
		0.2	hrs/day	\$1,250
	Loader operating cost	0.2	hrs/day	\$2,500
Daily inco	ming tonnage of carbon	2.0	ton/day	
-	Assume average of 10	2	tons/load	
	Number of loads	1	loads/day	
	Time to inspect each load	2	min/load	
	Time to transfer to storage	5	min/load	
	Total labor needed daily	7	mins	
		0.1	hrs/day	\$758
	Loader operating cost	0.1	hrs/day	\$1,517
Mixing opera	ations			
Feedstock	s to mixing daily	14	CY/day	
Assume u	se ECS mixer to mix		,	
Volume of	loader bucket	3	CY	
Number o	f bucket movements daily	5	buckets/day	
Time to m	ove to mixer & return	5	min/bucket	
Total labo	r needed daily (in ECS estimate)	24	min/day	
		0.4	hrs/day	
Loader op	erating cost	0.4	hrs/day	* -
Annual lat Annual loa	oor cost for mixing (in ECS labor estima ader cost for mixing (mixer cost in ECS	ate) estimate below)		\$0 \$5,137
ECS CV Sys	tem operating cost			
ECS estin	nated labor (0.5 FTE)	1040	hrs/yr	
ECS estin	nated electrical consumption	5.2	kWh	
	Annual usage	8760) hrs/yr	
ECS estir	mated roll-off truck usage	300	hrs/yr	

				\$15,000
Biofilter Operations				
1. Assume pile blowers can discharge directly into biofilte	r			
2. Assume daily inspection of biofilter operations			hro/dov	
2 Appual cost of labor to inspect biofilter			nis/day	¢۵
4 Annual replacement of hiofilter media				ψΟ
4. Annual replacement of biolitien media Media volume = $10' \times 20' \times 4' = 800 \text{ cf} =$		30	CY/vr	
Media cost =	\$	15.00	CY	\$450
CV Container Contents Removal to Curing				
1. Daily volume going to curing		9	CY/day	
a. Assume one ASP torn down each day				
2. Bucket size on loader		3	CY	
3. Number of bucket trips/day		3	trips/day	
Length of each trip		3	minutes	
Total time needed daily		9	min/day	
		0.2	hrs/day	
4. Annual cost of labor to empty bays				\$1,025
5. Annual machine cost to empty bays				\$2,050
Curing Pile Tear-Down				
1. Daily volume going from curing to screening		9	CY/day	
2. Capacity of loader bucket		3	CY	
3. Number of loader trips needed per day		3	trips/day	
4. Assumed time to reach screen		3	minutes	
5. Time needed for windrow tear-down		0.1	hrs/day	
6. Annual cost of labor to empty bays				\$922
7. Annual machine cost to empty bays				\$1,845
Screening				
1 Assume trommel screen with 3/8" screen				
Feed rate		50	CY/hr	
Screening time per CY		0.02	br/CY	
Screening time per en		0.02	hr/dav	
2 Annual cost for labor to screen		0.2	maay	\$1 107
3. Annual machine cost for screening				\$2,214
Moving Materials to Storage		2		
2. Daily overs production		2		
2. Daily compost production		1	CY/day	
3. Capacity of loader bucket		ა ი		
4. Number of loader tips needed per day		ა ე	minutes	
5. Assumed time to reach storage		د 1	minutes	
6. Annual east of labor for maying materials		0.1	nis/day	¢000
 Annual cost of labor for moving materials Annual machine cost for moving materials 				045 ¢1
7. Annual machine cost for moving materials				۵1,845
Loading out Compost to Market				
1. Annual compost production estimate		1,771	CY/yr	
2. Average out-load truck size		20	CY	
3. Annual number of loads		89	loads	

Time needed to load truck	0.5 hr	
5. Annual loading time needed	44 hours/yr	
6. Annual cost of labor for truck load-out		\$1,107
7. Annual machine cost for truck load-out		\$2,214
Housekeeping		
 Assume 1 hr/day spent on housekeeping 	1 hrs/day	
2. Annual time spent housekeeping	260 hrs/yr	
3. Annual cost of labor for housekeeping		\$6,500
	Subtotals	FIEs
	Labor	\$39,592 0.8
	Machine Usage	\$23,420
	Consumables	\$15,450
	Total	\$78,461
	Annual Tonnage	1,625 tons/yr
	Cost per ton	\$48.29 per ton

Recommendations

- Homer Demonstration Project Recipe
- Homer Demonstration Project Capital Cost Estimate
- Homer Demonstration Project Operating Cost Estimate
- Kenai Salmon Waste Demonstration Recipe
- Kenai Salmon Waste Demonstration Windrow Sizing
- Kenai Salmon Waste Demonstration Capital Cost Estimate
| COKER
COMPOSTING AND CONSULTING | | | | | 104 Chasewood Ct.
Vinton, VA 24179
(540) 890-1086
Fax: (540) 890-1087
cscoker@verizon.net
www.cokercompost.com |
|------------------------------------|---------------------|-----------------|---------------|---------|---|
| Project | KPB Organics F | easibility Stud | y Pro | oj. No. | 12-1125 |
| Client | Nelson Enginee | ering | Da | te | 7/23/2013 |
| Analysis | Recipe - Homer | r Composting F | acility - Dem | 10 | |
| Assumptions: | | | | | |
| 1. Estimated current total tonnage | e of food scraps is | 5 | | 170 | tons/yr |
| 2. Assume facility is open 5 days | /week | | | | |
| 3. Estimated weekly tonnage of fe | ood scraps | | | 3.3 | tons/wk |
| | x = 11 | | | | |
| MIX RATIO CALCULATIONS - D | ally | | Compost | | |
| INGREDIENTS | Food Scraps | Carbon | Recycle | Overs | TOTAL MIX TARGET |
| C (% AS IS) | 43.7 | 49.2 | 13.2 | 50 1 | |
| N (% AS IS) | 2.2 | 0.9 | 1.0 | 1.0 | |
| MOISTURE% | 71.5 | 40.1 | 45 | 45 | |
| UNITS IN MIX BY WGT (T) | 3.3 | 3.5 | 0.0 | 0.0 | 6.8 |
| UNITS IN MIX BY WGT (LB) | 6,538 | 7,000 | 0 | 0 | 13,538 |
| UNITS IN MIX BY VOL (CY) | 5.5 | 13.4 | 0.0 | 0.0 | 18.9 |
| DENSITY (LBS/CY) | 1196 | 522.5 | 900 | 500 | |
| POUNDS OF CARBON | 2,857 | 3,441 | 0 | 0 | 6,299 |
| POUNDS OF NITROGEN | 144 | 65 | 0 | 0 | 209 |
| C:N RATIO | 19.86 | 52.86 | 13.20 | 50.61 | 30.14 20 TO 30 |
| POUNDS OF MOISTURE | 4,675 | 2,807 | 0 | 0 | 7,482 |
| NUMBER OF UNITS | 6,538 | 7,000 | 0 | 0 | 13,538 |
| PERCENT MOISTURE | | | | L | 55.26 50 TO 65% |
| VOLATILE SOLIDS (%) | 87.4% | 98.3% | 44.2% | 98.3% | |
| VOLATILE SOLIDS (LBS) | 5,715 | 6,881 | 0 | 0 | 12,596 |
| TOTAL MASS (LBS) | 6,538 | 7,000 | 0 | 0 | 13,538 |
| MIX VS (%) | | | | [| 93.0% > 90% |
| DENSITY (LBS/CY) | 1196 | 522.5 | 900 | 500 | |
| DENSITY (KG/M3) | 709.6 | 310.0 | 533.9 | 296.6 | |
| % AIR SPACE | 36.14 | 72.10 | 51.94 | 73.30 | |
| FEEDSTOCK VOLUME (CY) | 5.5 | 13.4 | 0.0 | 0.0 | 13 |
| AIR VOLUME (CY) | 2.0 | 9.7 | 0.0 | 0.0 | 9.7 |
| PREDICTED FREE AIR SPACE | | | | | 72.1% 40-60% |

					, F www.c	104 Vi ax: <u>csc</u> csc	Chasewood Ct inton VA 24179 (540) 890-1086 (540) 890-1087 oker@verizon.net ercompost.com
Project	KPB Organics Feas	bility Study		Pr	roi. No.	12	-1125
Client	Nelson Engineering	, ,		Da	ate	7/2	22/2013
Analysis	Composting Capital	Expense Estimate - Hor	ner - ECS CV Pi	ilot Syste	m	-	
Assumptions	· · · ·	·		-			
1. Assume site	e requires 2' excavation	& backfill					
2. Capacity is	170 ton/year food scrap	s + 210 tons/yr greenwast	е				
3. ECS quote i	s for 2 vessel CV Comp	poster system with mixer					
4. Assume site	work for expansion to	8 CV Composter units					
Site size	•	·			0.5	ac	
	Processing building fo	otorint			0	SF	
	ECS system footprint	- r			12.000	SF	
	Allowance for access	roads. equipment maint.			5.000	SF	
	Total area needed				17.000	SF	
Components			Quantity	Unit	Unit Cost	0.	Extended Cost
1. Process	ing Building		Not needed for a	demonstra	ation project		
2. Services	3		Assume existing	g infrastrue	cture can hand	le	
3. ECS Cor	mposting System, mix	er & biofilter					
Per budget est	imate					\$	384,000
Snipping - Sea	attle to Homer					¢ ¢	2,000
4. Siteworl	k	ai experise				φ	192,000
Clearing and G	Grubbing		0.4 a	c \$	7.000	\$	2,732
Unclassified E	xcavation		1259 c	y \$	4.00	\$	5,037
Gravel pads for	or outdoor areas	12" thick, compacted	630 c	y \$	22.00	\$	13,852
Concrete pads	for ECS containers		150 S	F \$	12.00	\$	1,800
Asphalt pad fo	r rest of ECS system		16,850 S	F \$	6.00	\$	101,100
Sediment/eros	ion control		allowance			\$	10,000
				-		\$	712,521
				Contin		¢ ¢	/1,202 178 130
				Conting	Subtotal	φ \$	961.903
Equipment					Castola	Ŧ	001,000
SSO Collection	n Containers	6 CY each	4	\$	3,500	\$	14,000
Loader	Volvo L70 (used)		1	\$	79,500	\$	79,500
2nd bucket	3 CY bucket	for product only	1	\$	6,500	\$	6,500
Screen	Trom 406 (used)	n.	1	\$	47,900	\$	47,900
Grinder	Bandit 2600 horiz (use	ea)	1	\$	89,500 Subtotal	\$ \$	89,500 237,400

				104 Chasewo Vinton VA (540) 890 Fax: (540) 890 <u>cscoker@veriz</u> www.cokercompos	od Ct 24179)-1086)-1087 <u>zon.net</u> t.com
Project	KPB Organics Feasibility Study		Proi. N	lo . 12-1125	
Client	Nelson Engineering		Date	7/23/2013	
Analysis	Composting Demo Operating Expense Estimate	- Homer	- FCS	1,20,2010	
Assumption		11011101	200		_
1 Labor rate	(loaded) per hour			\$25.00 per bour	
2. Machine ra	ite (fuel + maintenance)			\$50.00 per nour	
3. Electricity i	ate			\$0.09 per kWh	
4. Dumpster p	bull charge			\$65.00 per pull	
4. Does not in	nclude amortized capital				
5. Facility is c	open 5 days/week, 52 weeks/year (260 days/yr)				
				Annual Co	<u>osts</u>
Waste Retrie	val from Transfer Sites				
Assume 4	dumpsters pulled once/week	208	pulls/yr		
	Annual cost for waste transfer			\$1	3.520
Waste Recei	nt			•	-,
Weekly in	coming tonnage of food scraps	33	ton/week		
Weekly III		0.5	tons/load		
	Number of loads	6.54	loads/week		
	Time to inspect each load	5	min/load		
		Ū.			
	Time to push into pile	5	min/load		
	Total labor needed daily	65	mins		
	, , , , , , , , , , , , , , , , , , ,	1.1	hrs/week	9	\$1,417
	Loader operating cost	1.1	hrs/week	9	52,833
Weekly in	coming tonnage of carbon	3.5	ton/week		
	Assume grinder operated	2	hrs/week		
	Total labor needed weekly	2	hrs/week		
		2	hrs/week	9	\$2,600
	Loader operating cost	2	hrs/week	9	5,200
	Grinder operating cost	2	hrs/week	3	5,200
Foodstock	ations	10	'Y/wook		
	s to mixing weekly	19	, I / WEEK		
Volume of	loader bucket	З	CY		
Number of	f bucket movements weekly	6	buckets/week		
Time to m	ove to mixer & return	5	min/bucket		
Total labo	r needed weekly	31	min/week		
		0.5	hrs/week		
Loader op	erating cost	0.5	hrs/week		
Annual lat	por cost for mixing				\$681
Annual loa	ader cost for mixing			9	51,362
Annual mi	xer operating cost			9	51,362
ECS CV Syst	em operating cost				
Estimated	labor	208	3 hrs/yr		

ECS estimated electrical consumption	1.3 kWh	
Annual usage	8322 hrs/yr	
ECS estimated roll-off truck usage	26 hrs/yr	
Annual cost of labor to manage CV system		\$5,200
Annual electrical cost for CV system		\$974
Annual cost for roll-off truck to empty CV containers		\$1,300
Biofilter Operations		
Included in ECS estimate		
Replace biofilter media annually		
Media volume = (10' x 20' x 4') = 800 cf =	30 CY/yr	
Media cost = Ground on-site	\$ - CY	\$ -
CV Container Contents Removal to Curing		
1. Volume going to curing	25 CY/reactor	
Number of reactor "cycles" per year	15 per year	
Total volume going to curing annually	375 CY/yr	
4. Bucket size on loader	3 CY	
5. Number of bucket trips	125 trips/yr	
Length of each trip	3 minutes	
Total time needed daily	375 min/yr	
	6.3 hrs/yr	
Annual cost of labor to empty CVs		\$156
Annual machine cost to empty CVs		\$313
Curing Pile Tear-Down		
 Volume going from curing to screening 	300 CY/year	
2. Capacity of loader bucket	3 CY	
3. Number of loader trips needed	100 trips/yr	
Assumed time to reach screen	3 minutes	
5. Time needed for windrow tear-down	5.0 hrs/yr	
6. Annual cost of labor to tear down piles		\$125
7. Annual machine cost to tear down piles		\$250
Screening		
1. Assume trommel screen with 3/8" screen		
Feed rate	10 CY/hr	
Screening time per CY	0.1 hr/CY	
Screening time needed	30.0 hr/yr	^
2. Annual cost for labor to screen		\$750
3. Annual machine cost for screening		\$1,500
Moving Materials to Storage		
1. Daily overs production	60 CY/yr	
2. Daily compost production	240 CY/yr	
3. Capacity of loader bucket	3 CY	
4. Number of loader trips needed	100 trips/yr	
5. Assumed time to reach storage	3 minutes	
 b. Time needed 7. A second sector (labor (second sector)) 	5.0 hrs/yr	A 40-
7. Annual cost of labor for moving materials		\$125
8. Annual machine cost for moving materials		\$250
Loading out Compost to Market		
Annual compost production estimate	240 CY/yr	
2. Average out-load truck size		
3. Annual number of loads		
4. I Ime needed to load truck	0.25 nr	
5. Annual loading time needed	60 nours/yr	#4 500
o. Annual cost of labor for truck load-out		\$1,500 \$0,000
7. Annual machine cost for truck load-out		\$3,000

Housekeeping

- 1. Time spent on housekeeping
- 2. Annual time spent housekeeping
- 3. Annual cost of labor for housekeeping

0.25 hrs/day 65 hrs/yr

\$1,625

Subtotals		FTEs	FTEs			
	Labor	\$14,179	0.3			
	Machine Usage	\$37,064				
Total		\$51,243				
	Annual Tonnage	352 tons/	yr			
	Cost per ton	\$145.58 per to	on			

COKER COMPOSTING AND CONSULTING					104 Chasewood Ct. Vinton, VA 24179 (540) 890-1086 Fax: (540) 890-1087 cscoker@verizon.net www.cokercompost.com
Project	KPB Organics	Feasibility St	udy	Proj. No.	12-1125
Client	Nelson Engine	ering		Date	7/23/2013
Analysis	Recipe - Salm	on Compostir	ng - Demo		
Assumptions: 1. Estimated current total tonna	ge of fish wastes	is		250	tons/yr
MIX RATIO CALCULATIONS -	Annual				
	Salmon Wastes	Carbon	Water		TOTAL MIX TARGET
C (% AS IS)	29.9	49.2	0.0		
N (% AS IS)	8.4	0.9	0.0		
MOISTURE%	71.7	40.1	100		
UNITS IN MIX BY WGT (T)	250.0	1,200.0	150.1		1,600.1
UNITS IN MIX BY WGT (LB)	500,000	2,400,000	300,200		3,200,200
UNITS IN MIX BY VOL (CY)	749.6	4593.3			5342.9
UNITS IN MIX BY VOL (GAL)			35,995		
DENSITY (LBS/CY)	667	522.5	900		
	140 500	1 170 840	0		1 320 340
	42 000	22 320	30		64 350
C'N RATIO	-2,000	52.86	0.00		20 66 20 TO 30
0.111/110	0.00	52.00	0.00		20.00 20 10 30
POUNDS OF MOISTURE	358,500	962,400	300,200		1,621,100
NUMBER OF UNITS	500,000	2,400,000	300,200		3,200,200
PERCENT MOISTURE					50.66 50 TO 65%
	60.7%	00.20/	11 20/		I
VOLATILE SOLIDS (%)	303 500	2 359 200	132 688		2 705 388
TOTAL MASS (LBS)	500,000	2,359,200	300 200		3 200 200
MIX VS (%)	000,000	2,400,000	000,200		87.4% > 90%
DENSITY (LBS/CY)	667	522.5	900		l
DENSITY (KG/M3)	395.7	310.0	533.9		1
% AIR SPACE	64.39	72.10	51.94		
FEEDSTOCK VOLUME (CY)	749.6	4593.3	0.0		4593
AIR VOLUME (CY)	482.7	3,311.8	0.0		3,311.8
PREDICTED FREE AIR SPAC	E				72.1% 40-60%

Data Sources: Salmon waste - June 2011 lab analysis of wastes from clam processing plant in DE Carbon - Sept. 2009 lab analysis of yard trimmings from southeastern PA

					ر Fi www.c	104 Ch Vinte (54 ax: (54 <u>cscoke</u> okerce	asewood Ct on VA 24179 40) 890-1086 40) 890-1087 er@verizon.net ompost.com
Project	KPB Organics Fea	sibility Study		Pro	j. No.	12-11	25
Client	Nelson Engineering	a construction of the second sec		Dat	e	7/24/2	2013
Analysis	Composting Capita	I Expense Estimate - Kei	nai Salmon Pilot				
Assumption	S						
1. Assume si	te requires no grading						
2. Capacity is	s 250 ton/year fish wast	es + 1,200 tons/yr greenwas	ste				
3. Assume o	pen-air turned windrow	operation					
4. Assume a	Il activities on graveled	surface over geotextile fabri	с				
Site size					31.1	ac	
	Composting area foo	tprint			385,506	SF	
	Allowance for access	roads, equipment maint. (@ 20%)		77,101	SF	
	Total area needed				462,607	SF	
Component	S		Quantity Unit	_	<u>Unit Cost</u>	Ext	ended Cost
Geotextile Fa	abric		462,607 SF	\$	0.50	\$	231,304
Gravel pads	for processing areas	12" thick, compacted	17,134 cy	\$	22.00	\$	376,939
Sediment/ero	osion control		allowance			\$	10,000
				_	Subtotal	\$	618,243
			Co	Des	sign @ 12%	\$	74,189
Fauinment			CO	ntinge	ency @ 25%	Φ	154,501
Loader	Volvo L70 (used)		1	\$	79,500	\$	79,500
2nd bucket	3 CY bucket	for product only	1	\$	6,500	\$	6,500
Screen	Trom 406 (used)		1	\$	47,900	\$	47,900
Grinder	Bandit 2600 horiz (us	sed)	1	\$	89,500	\$	89,500
					Subtotal	\$	223,400

104 Chasewood Ct Vinton VA 24179 (540) 890-1086 Fax: (540) 890-1087 cscoker@verizon.net www.cokercompost.com

Project	KPB Organics Feasibility Study	Proj. No.	12-1125	
Client	Nelson Engineering	Date	7/23/2013	
Analysis	Fish Waste Demo Sizing			

Assumptions:

1. Facility is open 5 days/week, 52 weeks/year (260 days/yr)

2. Facility will use open-air turned windrows

3. Size facility for 250 tons fish wastes during salmon run in July

Waste Volumes	(in cubic yards)
---------------	------------------

waste volumes (in cubic yalus)	
	Annual
	Volume (CY)
Salmon Wastes	749.6
Carbon Amendment	4593.3
Totals	5,342.9 CY/yr

Composting Materials Flows

1. Residence times for windrow composting

	Composting	Curing	<u>Total</u>
Windrow	45 days	75 days	120 days
2. Annual Volumes g Annual vo	oing to composting olumes of mixed feedstocks =		5,343 CY/yr
3. Annual Volumes g Annual vo	oing to curing (assume 40% v olumes of composted feedstoc	olume shrink in composting ks =	g) 3,740 CY/yr
4. Annual Volumes g Annual vo	oing to screening (assume 10 olumes of cured feedstocks =	% volume shrink in curing):	3,366 CY/yr
5. Screening a. Assume approx.	80% finished compost captur	e rate and 20% going to ov	ers
b. Annual volumes	of screened compost =		2,693 CY/yr
c. Annual volumes	of overs =		673 CY/yr

Feedstocks Receipt

Feedstocks Receipt		
1. Feedstock Receipts		
a. Assume daily delivery of fish wastes and ground woody wastes 5 day	s/week	
 b. Assume all feedstock deliveries by various vehicles (trash trucks, pick 	kups, etc.)	
 Assume feedstock receipts area cleared off by end of each day 		
d. Size receipts area		5,343 CY/year
Assume all materials come in during 30-day summer period	=	178 CY/day
	=	4,809 CF/day
e. Assume maximum receipts pile height	=	6 ft
f. Needed receipts area footprint	=	801 SF
g. Allow 50% more area for vehicle and equipment movement	=	401 SF
h. Total Feedstock receipts area	=	1,300 SF
_		
Feedstock Mixing		
1. Assume all feedstock mixing done by bucket blending with front-end loa	der	
2. Daily mixing volume needed	=	178.1 CY/day
3. Assume mixing done in feedstocks receipt area		
Ground Woody Feedstocks Storage		
1. Volume of woody material needed annually	_	4 600 CY
2. Assume all material delivered/stored prior to fish run season	_	5342 9 CV
2. Assume all material delivered stored prior to fish full season	_	4 600 CV
3. Storage volume needed	=	4,000 CT
1 Accume movimum storage pile size	=	124,200 CF
4. Assume maximum storage pile size		
5. Needed storage area rootprint		15,525 SF
Assume 3-sided storage bunker made of 2 x 2 x 6 blocks		CO #111
7. Potential storage bunker dimensions	=	60 ft VV
	=	259 ft. L
8. Allow 50' in front of storage bunker for equipment access		
9. Storage area dimensions	=	16,900 SF
Active Composting Windrow Sizing and Layout Calculations		
Active composing windrow Sizing and Layout Calculations	tunnal	
1. Assume use of a tractor-pulled verneer o to windrow turner with o x to	lunnei	
2. Assume trapezoidal windrow shape		
a. Volume per linear toot of windrow:		
A = n x (p-n), where $n = neight, p = width at pase$		0.4
Height	=	6 ft
Base	=	16 ft
Cross-sectional area per linear foot	=	60 SF
Volume per linear foot	=	2.22 CY/ LF
3. Linear footage of new windrows daily		
Daily volume from mixing / volume per linear foot	=	80 LF / day
Total volume of material in windrows during active composting	=	5,343 CY
5. Total linear footage of material in windrows	=	2,404 LF
6. Total area occupied by windrows	=	38,469 SF
Assume each windrow holds 2.5 days worth of mixed material		
80 LF / day x 2.5 days	=	200 LF
8. Volume of material in each windrow	=	445 CY
9. Number of windrows in active composting	=	12 windrows
10. Assume 20' spacing between windrows and 35' turning radii at each er	nd	
11. Each windrow is		
Length 200 ft + 35 ft + 35ft	=	270 ft
Width 16 ft + 20 ft	=	36 ft
Area of each windrow (gross)	=	9,733 SF
Area of all windrows (gross)	=	116,795 SF
12. Assume pad length is equal to gross windrow length	=	270 ft
Pad width is	=	432 ft
Composting Pad =		440 ft. W
		300 ft. L

Curing Pad Windrow Sizing and Layout Ca	Iculations				
1. Assume same size windrows as in active co	mposting				
2. Assume 40% volume smink during composing			_	5 3/3	CV/ur
Annual volume to curin	posting		_	3,343	CV/yr
A Linear footage of new windrows appually	ig		_	3,200	
4. Total volume of material in windrows during	75-day curing perio	hd	_	3 206	
4. Total volume of material in windrows during 75-day curing period =			_	3,200	
5. Total inteal toolage of material in windrows =			_	22 021	SE
 Total area occupied by windrows Assume each curing windrow holds two corr 	posting windrows		-	23,001	51
	f v 0 6 obrinkogo		_	E24	CV
2 X 200 LF X 2.22 G 1/1 9 Number of windrows in ouring	r x 0.0 Shinikaye		=	554 6	windrowe
Assume 20' spacing between windrows and 35' turning radii at each and				0	windrows
9. Assume 20 spacing between windrows and	55 turning rauli at	each enu			
I consthe 200 ft + 25	ft 1 25ft		_	270	f+
Length 200 ft + 33	11 + 3311		=	270	11 ft
Area of each windrow	(groce)		=	00 0 722	IL SE
Area of all windrows ((giuss)		=	9,733	SF
Area or all windrows (g	1055)		=	30,430	3F 4
T1. Assume pad length is equal to gross whom	owiength		=	270	п 4
Pad width is	Curring Dad		=	216	
<u>Guring Pad =</u>				220	IL. VV
				300	п. L
Servening & Broduct Storage Sizing and L	avout Calculation				
1 Assume use of a TROM 406 tro	ayour Carculation	15			
2. Assume approximately 20% /20%	fines/overs.colit	een			
2. Assume approximately 60%/20	/o III es/Overs spiit				
3. Flatt off offe year fillistied comp	USI SIDIAYE			2.266	CV/hrr
Volume going to screening				3,300	
5. Volume going to storage	Il dia ana ana ant		=	2,093	
6. Volume of overs recycled as but	king agent		=	673	C Y/yr
7. Screen size			Length	16	n u
0 Allow 05 ft all sides for any inner			vviatn	0	π
8. Allow 25 ft all sides for equipment movement				50	64 NA/
<u>Screening Area =</u>				56	ft. VV
0. Total Values in Starses Bile				0 (00	
9. Total volume in Storage Pile			=	2,693	C Y/yr
			=	72,707	CF
10. Assume maximum pile height			=	12	ft
11. Area of storage pile			=	163,590	SF
12. Assume open pile					
13. Width of pile			=	500	ft
14. Length of pile			=	327	ft
Product Storage Area =			500	ft. W	
				330	ft. L
	Area	Area			
Area Summary	(sq. ft.)	(acres)			
<u>On Gravelled Pad</u>					
Feedstock Receipt	1,300	0.03			
Ground Feedstocks Storage	16,900	0.39			
Composting Pad	132,000	3.03			
Curing Pad	66,000	1.52			
Screening Area	4,256	0.10			

4,256 <u>165,000</u> 385,456

Total

Product Storage Area

0.10 <u>3.79</u> 8.85